通过深度学习人脸识别优化考勤系统

Mahmoud Ali, Anjali Diwan, Dinesh Kumar
{"title":"通过深度学习人脸识别优化考勤系统","authors":"Mahmoud Ali, Anjali Diwan, Dinesh Kumar","doi":"10.12785/ijcds/1501108","DOIUrl":null,"url":null,"abstract":": The significance of face recognition technology spans across diverse domains due to its practical applications. This study introduces an innovative face recognition system that seamlessly integrates Multi-task Cascaded Convolutional Neural Networks (MTCNN) for precise face detection, VGGFace for feature extraction, and Support Vector Machine (SVM) for e ffi cient classification. The system demonstrates exceptional real-time performance in tracking multiple faces within a single frame, particularly excelling in attendance monitoring. Notably, the ”VGGFace” model emerges as a standout performer, showcasing remarkable accuracy and achieving an impressive F-score of 95% when coupled with SVM. This underscores the model’s e ff ectiveness in recognizing facial identities, attributing its success to robust training on extensive datasets. The research underscores the potency of the VGGFace model, especially in collaboration with various classifiers, with SVM yielding notably high accuracy rates.","PeriodicalId":37180,"journal":{"name":"International Journal of Computing and Digital Systems","volume":"9 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attendance System Optimization through Deep Learning Face\\nRecognition\",\"authors\":\"Mahmoud Ali, Anjali Diwan, Dinesh Kumar\",\"doi\":\"10.12785/ijcds/1501108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": The significance of face recognition technology spans across diverse domains due to its practical applications. This study introduces an innovative face recognition system that seamlessly integrates Multi-task Cascaded Convolutional Neural Networks (MTCNN) for precise face detection, VGGFace for feature extraction, and Support Vector Machine (SVM) for e ffi cient classification. The system demonstrates exceptional real-time performance in tracking multiple faces within a single frame, particularly excelling in attendance monitoring. Notably, the ”VGGFace” model emerges as a standout performer, showcasing remarkable accuracy and achieving an impressive F-score of 95% when coupled with SVM. This underscores the model’s e ff ectiveness in recognizing facial identities, attributing its success to robust training on extensive datasets. The research underscores the potency of the VGGFace model, especially in collaboration with various classifiers, with SVM yielding notably high accuracy rates.\",\"PeriodicalId\":37180,\"journal\":{\"name\":\"International Journal of Computing and Digital Systems\",\"volume\":\"9 20\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computing and Digital Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12785/ijcds/1501108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing and Digital Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12785/ijcds/1501108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

:由于人脸识别技术的实际应用,它的意义横跨多个领域。本研究介绍了一种创新的人脸识别系统,该系统无缝集成了用于精确人脸检测的多任务级联卷积神经网络(MTCNN)、用于特征提取的 VGGFace 和用于高效分类的支持向量机(SVM)。该系统在单帧内追踪多张人脸方面表现出卓越的实时性能,尤其是在考勤监控方面。值得注意的是,"VGGFace "模型表现突出,在与 SVM 结合使用时,显示出卓越的准确性,并取得了令人印象深刻的 95% 的 F 分数。这凸显了该模型在识别面部身份方面的高效性,其成功归功于在大量数据集上进行的强大训练。研究强调了 VGGFace 模型的有效性,特别是在与各种分类器合作时,SVM 的准确率尤其高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Attendance System Optimization through Deep Learning Face Recognition
: The significance of face recognition technology spans across diverse domains due to its practical applications. This study introduces an innovative face recognition system that seamlessly integrates Multi-task Cascaded Convolutional Neural Networks (MTCNN) for precise face detection, VGGFace for feature extraction, and Support Vector Machine (SVM) for e ffi cient classification. The system demonstrates exceptional real-time performance in tracking multiple faces within a single frame, particularly excelling in attendance monitoring. Notably, the ”VGGFace” model emerges as a standout performer, showcasing remarkable accuracy and achieving an impressive F-score of 95% when coupled with SVM. This underscores the model’s e ff ectiveness in recognizing facial identities, attributing its success to robust training on extensive datasets. The research underscores the potency of the VGGFace model, especially in collaboration with various classifiers, with SVM yielding notably high accuracy rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computing and Digital Systems
International Journal of Computing and Digital Systems Business, Management and Accounting-Management of Technology and Innovation
CiteScore
1.70
自引率
0.00%
发文量
111
期刊最新文献
Application of Optimized Deep Learning Mechanism for Recognition and Categorization of Retinal Diseases Application of Optimized Deep Learning Mechanism for Recognition and Categorization of Retinal Diseases IoT-based AI Methods for Indoor Air Quality Monitoring Systems: A Systematic Review Machine Learning Based Smartphone Screen GestureRecognition Using Smartphone Embedded Accelerometer and Gyroscope QR Shield: A Dual Machine Learning Approach Towards Securing QR Codes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1