利用可解释人工智能预测肺癌风险

Shahin Shoukat Makubhai, Ganesh R. Pathak, Pankaj R. Chandre
{"title":"利用可解释人工智能预测肺癌风险","authors":"Shahin Shoukat Makubhai, Ganesh R. Pathak, Pankaj R. Chandre","doi":"10.11591/eei.v13i2.6280","DOIUrl":null,"url":null,"abstract":"Lung cancer is a lethal disease that claims numerous lives annually, and early detection is essential for improving survival rates. Machine learning has shown promise in predicting lung cancer risk, but the lack of transparency and interpretability in black-box models impedes the understanding of factors that contribute to risk. Explainable artificial intelligence (XAI) can overcome this limitation by providing a clear and understandable approach to machine learning. In this study, we will use a large patient record dataset to train an XAI-based model that considers various patient information, including lifestyle factors, clinical data, and medical history, for predicting lung cancer risk. We will use different XAI techniques, including decision trees, partial dependence plots, and feature importance, to interpret the model’s predictions. These methods will provide healthcare professionals with a transparent and interpretable framework for screening and treatment decisions concerning lung cancer risk.","PeriodicalId":37619,"journal":{"name":"Bulletin of Electrical Engineering and Informatics","volume":"11 44","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting lung cancer risk using explainable artificial intelligence\",\"authors\":\"Shahin Shoukat Makubhai, Ganesh R. Pathak, Pankaj R. Chandre\",\"doi\":\"10.11591/eei.v13i2.6280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lung cancer is a lethal disease that claims numerous lives annually, and early detection is essential for improving survival rates. Machine learning has shown promise in predicting lung cancer risk, but the lack of transparency and interpretability in black-box models impedes the understanding of factors that contribute to risk. Explainable artificial intelligence (XAI) can overcome this limitation by providing a clear and understandable approach to machine learning. In this study, we will use a large patient record dataset to train an XAI-based model that considers various patient information, including lifestyle factors, clinical data, and medical history, for predicting lung cancer risk. We will use different XAI techniques, including decision trees, partial dependence plots, and feature importance, to interpret the model’s predictions. These methods will provide healthcare professionals with a transparent and interpretable framework for screening and treatment decisions concerning lung cancer risk.\",\"PeriodicalId\":37619,\"journal\":{\"name\":\"Bulletin of Electrical Engineering and Informatics\",\"volume\":\"11 44\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Electrical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/eei.v13i2.6280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/eei.v13i2.6280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

肺癌是一种致命疾病,每年夺去无数人的生命,而早期检测对于提高存活率至关重要。机器学习在预测肺癌风险方面大有可为,但黑盒模型缺乏透明度和可解释性,妨碍了人们对导致风险的因素的理解。可解释人工智能(XAI)通过提供一种清晰易懂的机器学习方法,可以克服这一局限性。在本研究中,我们将使用一个大型患者记录数据集来训练一个基于 XAI 的模型,该模型考虑了患者的各种信息,包括生活方式因素、临床数据和病史,用于预测肺癌风险。我们将使用不同的 XAI 技术(包括决策树、偏倚图和特征重要性)来解释模型的预测结果。这些方法将为医疗保健专业人员提供一个透明、可解释的框架,用于肺癌风险筛查和治疗决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting lung cancer risk using explainable artificial intelligence
Lung cancer is a lethal disease that claims numerous lives annually, and early detection is essential for improving survival rates. Machine learning has shown promise in predicting lung cancer risk, but the lack of transparency and interpretability in black-box models impedes the understanding of factors that contribute to risk. Explainable artificial intelligence (XAI) can overcome this limitation by providing a clear and understandable approach to machine learning. In this study, we will use a large patient record dataset to train an XAI-based model that considers various patient information, including lifestyle factors, clinical data, and medical history, for predicting lung cancer risk. We will use different XAI techniques, including decision trees, partial dependence plots, and feature importance, to interpret the model’s predictions. These methods will provide healthcare professionals with a transparent and interpretable framework for screening and treatment decisions concerning lung cancer risk.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of Electrical Engineering and Informatics
Bulletin of Electrical Engineering and Informatics Computer Science-Computer Science (miscellaneous)
CiteScore
3.60
自引率
0.00%
发文量
0
期刊介绍: Bulletin of Electrical Engineering and Informatics publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: Computer Science, Computer Engineering and Informatics[...] Electronics[...] Electrical and Power Engineering[...] Telecommunication and Information Technology[...]Instrumentation and Control Engineering[...]
期刊最新文献
An optimistic-pessimistic game cross-efficiency method based on a Gibbs entropy model for ranking decision making units A study on the solution of interval linear fractional programming problem FPGA implementation of DTCWT architecture's high-speed DA structure for OFDM-based transceiver with CS Mathematics for 2D face recognition from real time image data set using deep learning techniques A comprehensive survey on several fire management approaches in wireless sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1