超临界二氧化碳萃取香茅油回顾:工艺优化、产品质量和应用

IF 0.6 Q3 MULTIDISCIPLINARY SCIENCES Pertanika Journal of Science and Technology Pub Date : 2024-04-01 DOI:10.47836/pjst.32.3.04
N. R. Putra, Ahmad Hazim Abdul Aziz, Dwila Nur Rizkiyah, M. A. Che Yunus, R. S. Alwi, Reny Tri Anggraini, Siti Khodijah, Irianto Irianto, Lailatul Qomariyah
{"title":"超临界二氧化碳萃取香茅油回顾:工艺优化、产品质量和应用","authors":"N. R. Putra, Ahmad Hazim Abdul Aziz, Dwila Nur Rizkiyah, M. A. Che Yunus, R. S. Alwi, Reny Tri Anggraini, Siti Khodijah, Irianto Irianto, Lailatul Qomariyah","doi":"10.47836/pjst.32.3.04","DOIUrl":null,"url":null,"abstract":"This review paper explores the utilization of supercritical carbon dioxide (SC-CO2) extraction to isolate citronella oil, delving into its multifaceted dimensions, including process optimization, product quality enhancement, and diverse potential applications. Citronella oil, renowned for its myriad bioactive compounds with demonstrated health benefits, is a coveted essential oil in the pharmaceutical, cosmetics, and food industries. The transition from traditional extraction techniques to SC-CO2 extraction presents a paradigm shift due to its manifold advantages, such as heightened yield rates, expedited extraction durations, and elevated product quality. However, the efficacy of SC-CO2 extraction is intricately interwoven with an array of parameters encompassing pressure, temperature, flow rate, particle size, and co-solvent ratios. Accordingly, meticulous process optimization is indispensable in achieving the desired product quality while maximizing yield. Furthermore, the paper explores the extensive spectrum of potential applications for citronella oil, extending its reach into formulations with antimicrobial, insecticidal, and antioxidant properties. These applications underscore the versatility and commercial appeal of citronella oil. The review establishes SC-CO2 extraction of citronella oil as a promising and sustainable alternative to conventional extraction methodologies, offering myriad applications across the pharmaceutical, cosmetics, and food sectors. This scholarly work provides valuable insights into the intricacies of process optimization and product quality. It outlines future perspectives and avenues for further exploration in SC-CO2 extraction of citronella oil.","PeriodicalId":46234,"journal":{"name":"Pertanika Journal of Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supercritical Carbon Dioxide Extraction of Citronella Oil Review: Process Optimization, Product Quality, and Applications\",\"authors\":\"N. R. Putra, Ahmad Hazim Abdul Aziz, Dwila Nur Rizkiyah, M. A. Che Yunus, R. S. Alwi, Reny Tri Anggraini, Siti Khodijah, Irianto Irianto, Lailatul Qomariyah\",\"doi\":\"10.47836/pjst.32.3.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This review paper explores the utilization of supercritical carbon dioxide (SC-CO2) extraction to isolate citronella oil, delving into its multifaceted dimensions, including process optimization, product quality enhancement, and diverse potential applications. Citronella oil, renowned for its myriad bioactive compounds with demonstrated health benefits, is a coveted essential oil in the pharmaceutical, cosmetics, and food industries. The transition from traditional extraction techniques to SC-CO2 extraction presents a paradigm shift due to its manifold advantages, such as heightened yield rates, expedited extraction durations, and elevated product quality. However, the efficacy of SC-CO2 extraction is intricately interwoven with an array of parameters encompassing pressure, temperature, flow rate, particle size, and co-solvent ratios. Accordingly, meticulous process optimization is indispensable in achieving the desired product quality while maximizing yield. Furthermore, the paper explores the extensive spectrum of potential applications for citronella oil, extending its reach into formulations with antimicrobial, insecticidal, and antioxidant properties. These applications underscore the versatility and commercial appeal of citronella oil. The review establishes SC-CO2 extraction of citronella oil as a promising and sustainable alternative to conventional extraction methodologies, offering myriad applications across the pharmaceutical, cosmetics, and food sectors. This scholarly work provides valuable insights into the intricacies of process optimization and product quality. It outlines future perspectives and avenues for further exploration in SC-CO2 extraction of citronella oil.\",\"PeriodicalId\":46234,\"journal\":{\"name\":\"Pertanika Journal of Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pertanika Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47836/pjst.32.3.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pertanika Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47836/pjst.32.3.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

这篇综述论文探讨了利用超临界二氧化碳(SC-CO2)萃取分离香茅油的方法,深入探讨了其多方面的问题,包括工艺优化、产品质量提升和多种潜在应用。香茅油以其具有多种生物活性的化合物而闻名,并具有明显的保健功效,是制药、化妆品和食品行业梦寐以求的精油。从传统萃取技术到 SC-CO2 萃取技术的转变是一种模式的转变,因为 SC-CO2 萃取技术具有多方面的优势,如提高产量、缩短萃取时间和提高产品质量。然而,SC-CO2萃取的功效与一系列参数错综复杂地交织在一起,这些参数包括压力、温度、流速、粒度和助溶剂比例。因此,要在最大限度提高产量的同时获得理想的产品质量,细致的工艺优化必不可少。此外,本文还探讨了香茅油的广泛潜在应用,将其应用范围扩展到具有抗菌、杀虫和抗氧化特性的配方中。这些应用凸显了香茅油的多功能性和商业吸引力。这篇综述将 SC-CO2 萃取香茅油确立为一种有前途的、可持续的替代传统萃取方法,可在制药、化妆品和食品领域提供无数应用。该学术著作为工艺优化和产品质量的复杂性提供了宝贵的见解。它概述了进一步探索 SC-CO2 萃取香茅油的未来前景和途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Supercritical Carbon Dioxide Extraction of Citronella Oil Review: Process Optimization, Product Quality, and Applications
This review paper explores the utilization of supercritical carbon dioxide (SC-CO2) extraction to isolate citronella oil, delving into its multifaceted dimensions, including process optimization, product quality enhancement, and diverse potential applications. Citronella oil, renowned for its myriad bioactive compounds with demonstrated health benefits, is a coveted essential oil in the pharmaceutical, cosmetics, and food industries. The transition from traditional extraction techniques to SC-CO2 extraction presents a paradigm shift due to its manifold advantages, such as heightened yield rates, expedited extraction durations, and elevated product quality. However, the efficacy of SC-CO2 extraction is intricately interwoven with an array of parameters encompassing pressure, temperature, flow rate, particle size, and co-solvent ratios. Accordingly, meticulous process optimization is indispensable in achieving the desired product quality while maximizing yield. Furthermore, the paper explores the extensive spectrum of potential applications for citronella oil, extending its reach into formulations with antimicrobial, insecticidal, and antioxidant properties. These applications underscore the versatility and commercial appeal of citronella oil. The review establishes SC-CO2 extraction of citronella oil as a promising and sustainable alternative to conventional extraction methodologies, offering myriad applications across the pharmaceutical, cosmetics, and food sectors. This scholarly work provides valuable insights into the intricacies of process optimization and product quality. It outlines future perspectives and avenues for further exploration in SC-CO2 extraction of citronella oil.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pertanika Journal of Science and Technology
Pertanika Journal of Science and Technology MULTIDISCIPLINARY SCIENCES-
CiteScore
1.50
自引率
16.70%
发文量
178
期刊介绍: Pertanika Journal of Science and Technology aims to provide a forum for high quality research related to science and engineering research. Areas relevant to the scope of the journal include: bioinformatics, bioscience, biotechnology and bio-molecular sciences, chemistry, computer science, ecology, engineering, engineering design, environmental control and management, mathematics and statistics, medicine and health sciences, nanotechnology, physics, safety and emergency management, and related fields of study.
期刊最新文献
A Review on the Development of Microcarriers for Cell Culture Applications The Compatibility of Cement Bonded Fibreboard Through Dimensional Stability Analysis: A Review Bending Effects on Polyvinyl Alcohol Thin Film for Flexible Wearable Antenna Substrate Mesh Optimisation for General 3D Printed Objects with Cusp-Height Triangulation Approach The Riblet Short-Slot Coupler Using Substrate Integrated Waveguide (SIW) for High-frequency Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1