双金属钴/白云石催化剂对甘油转化为 1,2-丙二醇的影响

IF 0.6 Q3 MULTIDISCIPLINARY SCIENCES Pertanika Journal of Science and Technology Pub Date : 2024-04-01 DOI:10.47836/pjst.32.3.09
N. Azri, R. Irmawati, U. Nda-Umar, M. I. Saiman, Y. Taufiq-Yap, Ghassan Abdulkareem-Alsultan
{"title":"双金属钴/白云石催化剂对甘油转化为 1,2-丙二醇的影响","authors":"N. Azri, R. Irmawati, U. Nda-Umar, M. I. Saiman, Y. Taufiq-Yap, Ghassan Abdulkareem-Alsultan","doi":"10.47836/pjst.32.3.09","DOIUrl":null,"url":null,"abstract":"This present study examines the efficacy of using dolomite (Dol, CaMg(CO3)2)-supported copper (Cu) and cobalt (Co) bimetallic and monometallic catalysts for the hydrogenolysis of glycerol to propylene glycol (PG; 1,2-PDO). The proposed catalysts were generated using the impregnation process before they were calcined at 500°C and reduced at 600°C. Advanced analytical techniques namely Brunauer, Emmett, and Teller (BET) method; the Barrett, Joyner, and Halenda (BJH) method; temperature-programmed desorption of ammonia (NH3–TPD), hydrogen-temperature programmed reduction (H2-TPR), X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM) were then used to characterise the synthesised catalysts, whose performance was then tested in the hydrogenolysis of glycerol. Of all the synthesised catalysts tested in the hydrogenolysis process, the Co-Cu/Dol bimetallic catalyst performed best, with an 80.3% glycerol conversion and 85.9% PG selectivity at a pressure of 4 MPa, a temperature of 200°C, and a reaction time of 10 hours. Its high catalytic performance was attributed to effective interactions between its Co-Cu-Dol species, which resulted in acceptable acidity, good reducibility of metal oxide species at low temperatures, larger surface area (15.3 m2 g-1), large-sized particles, fewer pores (0.032 cm3 g-1), and smaller pore diameter (0.615 nm).","PeriodicalId":46234,"journal":{"name":"Pertanika Journal of Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Bimetallic Co-Cu/Dolomite Catalyst on Glycerol Conversion to 1,2-Propanediol\",\"authors\":\"N. Azri, R. Irmawati, U. Nda-Umar, M. I. Saiman, Y. Taufiq-Yap, Ghassan Abdulkareem-Alsultan\",\"doi\":\"10.47836/pjst.32.3.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This present study examines the efficacy of using dolomite (Dol, CaMg(CO3)2)-supported copper (Cu) and cobalt (Co) bimetallic and monometallic catalysts for the hydrogenolysis of glycerol to propylene glycol (PG; 1,2-PDO). The proposed catalysts were generated using the impregnation process before they were calcined at 500°C and reduced at 600°C. Advanced analytical techniques namely Brunauer, Emmett, and Teller (BET) method; the Barrett, Joyner, and Halenda (BJH) method; temperature-programmed desorption of ammonia (NH3–TPD), hydrogen-temperature programmed reduction (H2-TPR), X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM) were then used to characterise the synthesised catalysts, whose performance was then tested in the hydrogenolysis of glycerol. Of all the synthesised catalysts tested in the hydrogenolysis process, the Co-Cu/Dol bimetallic catalyst performed best, with an 80.3% glycerol conversion and 85.9% PG selectivity at a pressure of 4 MPa, a temperature of 200°C, and a reaction time of 10 hours. Its high catalytic performance was attributed to effective interactions between its Co-Cu-Dol species, which resulted in acceptable acidity, good reducibility of metal oxide species at low temperatures, larger surface area (15.3 m2 g-1), large-sized particles, fewer pores (0.032 cm3 g-1), and smaller pore diameter (0.615 nm).\",\"PeriodicalId\":46234,\"journal\":{\"name\":\"Pertanika Journal of Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pertanika Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47836/pjst.32.3.09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pertanika Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47836/pjst.32.3.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了使用白云石(Dol,CaMg(CO3)2)支撑的铜(Cu)和钴(Co)双金属和单金属催化剂将甘油氢解为丙二醇(PG;1,2-PDO)的功效。所提议的催化剂是在 500°C 煅烧和 600°C 还原之前使用浸渍工艺生成的。然后使用先进的分析技术,即布鲁纳、艾美特和特勒(BET)法;巴雷特、乔伊纳和哈伦达(BJH)法;氨的温度编程解吸(NH3-TPD)、氢-温度编程还原(H2-TPR)、X 射线衍射(XRD)分析和扫描电子显微镜(SEM),对合成的催化剂进行表征,并在甘油的氢解过程中测试其性能。在氢解过程中测试的所有合成催化剂中,Co-Cu/Dol 双金属催化剂的性能最好,在压力为 4 兆帕、温度为 200 摄氏度、反应时间为 10 小时的条件下,甘油转化率为 80.3%,PG 选择性为 85.9%。其催化性能之所以如此之高,是因为 Co-Cu-Dol 物种之间有效的相互作用产生了可接受的酸度、低温下金属氧化物物种良好的还原性、较大的表面积(15.3 平方米 g-1)、大尺寸颗粒、较少的孔隙(0.032 cm3 g-1)和较小的孔径(0.615 nm)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Bimetallic Co-Cu/Dolomite Catalyst on Glycerol Conversion to 1,2-Propanediol
This present study examines the efficacy of using dolomite (Dol, CaMg(CO3)2)-supported copper (Cu) and cobalt (Co) bimetallic and monometallic catalysts for the hydrogenolysis of glycerol to propylene glycol (PG; 1,2-PDO). The proposed catalysts were generated using the impregnation process before they were calcined at 500°C and reduced at 600°C. Advanced analytical techniques namely Brunauer, Emmett, and Teller (BET) method; the Barrett, Joyner, and Halenda (BJH) method; temperature-programmed desorption of ammonia (NH3–TPD), hydrogen-temperature programmed reduction (H2-TPR), X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM) were then used to characterise the synthesised catalysts, whose performance was then tested in the hydrogenolysis of glycerol. Of all the synthesised catalysts tested in the hydrogenolysis process, the Co-Cu/Dol bimetallic catalyst performed best, with an 80.3% glycerol conversion and 85.9% PG selectivity at a pressure of 4 MPa, a temperature of 200°C, and a reaction time of 10 hours. Its high catalytic performance was attributed to effective interactions between its Co-Cu-Dol species, which resulted in acceptable acidity, good reducibility of metal oxide species at low temperatures, larger surface area (15.3 m2 g-1), large-sized particles, fewer pores (0.032 cm3 g-1), and smaller pore diameter (0.615 nm).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pertanika Journal of Science and Technology
Pertanika Journal of Science and Technology MULTIDISCIPLINARY SCIENCES-
CiteScore
1.50
自引率
16.70%
发文量
178
期刊介绍: Pertanika Journal of Science and Technology aims to provide a forum for high quality research related to science and engineering research. Areas relevant to the scope of the journal include: bioinformatics, bioscience, biotechnology and bio-molecular sciences, chemistry, computer science, ecology, engineering, engineering design, environmental control and management, mathematics and statistics, medicine and health sciences, nanotechnology, physics, safety and emergency management, and related fields of study.
期刊最新文献
A Review on the Development of Microcarriers for Cell Culture Applications The Compatibility of Cement Bonded Fibreboard Through Dimensional Stability Analysis: A Review Bending Effects on Polyvinyl Alcohol Thin Film for Flexible Wearable Antenna Substrate Mesh Optimisation for General 3D Printed Objects with Cusp-Height Triangulation Approach The Riblet Short-Slot Coupler Using Substrate Integrated Waveguide (SIW) for High-frequency Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1