{"title":"开发用于测量流体流速的高能效、高灵敏度热微型传感器","authors":"D. F. Valencia-Grisales, Claudia Reyes-Betanzo","doi":"10.1109/MIM.2024.10473014","DOIUrl":null,"url":null,"abstract":"A calorimetric-based thermal sensor is precisely designed to measure volumetric flow rates in water, air, and nitrogen. Extensive simulations of the sensor's performance are conducted using COMSOL Multi-physics® software. In order to validate the simulation results, a comprehensive comparative analysis is carried out, utilizing the well-established one-dimensional model proposed by Nguyen and Dötzel, The sensor's construction incorporates high-quality materials such as titanium, phosphorus-doped amorphous hydrogenated silicon carbide (P-doped a-SiC:H), aluminum, and borosilicate glass substrates, ensuring robustness and reliability. The measurement range investigated spans from the flow rates of $0\\ \\mu\\mathrm{l}/\\text{min}$ to $45\\ \\mu\\mathrm{l}/\\text{min}$ for water, while for air and nitrogen, a broader range of 0 ml/min to 187 ml/min is considered. The evaluation of results showcases a low power consumption of approximately 7.6 mW, underlining the sensor's energy efficiency. Furthermore, the sensor exhibits remarkable sensitivities, with values reaching 54.89 mV/(mm/s)/mW for water flow and 8.9 mV/(m/s)/mW for gases, underscoring its exceptional performance across various applications.","PeriodicalId":55025,"journal":{"name":"IEEE Instrumentation & Measurement Magazine","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of an Energy-Efficient and Highly Sensitive Thermal Microsensor for Measuring Flow Rates of Fluids\",\"authors\":\"D. F. Valencia-Grisales, Claudia Reyes-Betanzo\",\"doi\":\"10.1109/MIM.2024.10473014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A calorimetric-based thermal sensor is precisely designed to measure volumetric flow rates in water, air, and nitrogen. Extensive simulations of the sensor's performance are conducted using COMSOL Multi-physics® software. In order to validate the simulation results, a comprehensive comparative analysis is carried out, utilizing the well-established one-dimensional model proposed by Nguyen and Dötzel, The sensor's construction incorporates high-quality materials such as titanium, phosphorus-doped amorphous hydrogenated silicon carbide (P-doped a-SiC:H), aluminum, and borosilicate glass substrates, ensuring robustness and reliability. The measurement range investigated spans from the flow rates of $0\\\\ \\\\mu\\\\mathrm{l}/\\\\text{min}$ to $45\\\\ \\\\mu\\\\mathrm{l}/\\\\text{min}$ for water, while for air and nitrogen, a broader range of 0 ml/min to 187 ml/min is considered. The evaluation of results showcases a low power consumption of approximately 7.6 mW, underlining the sensor's energy efficiency. Furthermore, the sensor exhibits remarkable sensitivities, with values reaching 54.89 mV/(mm/s)/mW for water flow and 8.9 mV/(m/s)/mW for gases, underscoring its exceptional performance across various applications.\",\"PeriodicalId\":55025,\"journal\":{\"name\":\"IEEE Instrumentation & Measurement Magazine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Instrumentation & Measurement Magazine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/MIM.2024.10473014\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Instrumentation & Measurement Magazine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/MIM.2024.10473014","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Development of an Energy-Efficient and Highly Sensitive Thermal Microsensor for Measuring Flow Rates of Fluids
A calorimetric-based thermal sensor is precisely designed to measure volumetric flow rates in water, air, and nitrogen. Extensive simulations of the sensor's performance are conducted using COMSOL Multi-physics® software. In order to validate the simulation results, a comprehensive comparative analysis is carried out, utilizing the well-established one-dimensional model proposed by Nguyen and Dötzel, The sensor's construction incorporates high-quality materials such as titanium, phosphorus-doped amorphous hydrogenated silicon carbide (P-doped a-SiC:H), aluminum, and borosilicate glass substrates, ensuring robustness and reliability. The measurement range investigated spans from the flow rates of $0\ \mu\mathrm{l}/\text{min}$ to $45\ \mu\mathrm{l}/\text{min}$ for water, while for air and nitrogen, a broader range of 0 ml/min to 187 ml/min is considered. The evaluation of results showcases a low power consumption of approximately 7.6 mW, underlining the sensor's energy efficiency. Furthermore, the sensor exhibits remarkable sensitivities, with values reaching 54.89 mV/(mm/s)/mW for water flow and 8.9 mV/(m/s)/mW for gases, underscoring its exceptional performance across various applications.
期刊介绍:
IEEE Instrumentation & Measurement Magazine is a bimonthly publication. It publishes in February, April, June, August, October, and December of each year. The magazine covers a wide variety of topics in instrumentation, measurement, and systems that measure or instrument equipment or other systems. The magazine has the goal of providing readable introductions and overviews of technology in instrumentation and measurement to a wide engineering audience. It does this through articles, tutorials, columns, and departments. Its goal is to cross disciplines to encourage further research and development in instrumentation and measurement.