中性点非有效接地系统中单相接地故障的分布式自愈控制

IF 0.8 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Emerging Electric Power Systems Pub Date : 2024-04-01 DOI:10.1515/ijeeps-2023-0420
Silin He, Jiran Zhu, Di Zhang, Shengpeng Liu, Luxin Zhan, Chun Chen
{"title":"中性点非有效接地系统中单相接地故障的分布式自愈控制","authors":"Silin He, Jiran Zhu, Di Zhang, Shengpeng Liu, Luxin Zhan, Chun Chen","doi":"10.1515/ijeeps-2023-0420","DOIUrl":null,"url":null,"abstract":"\n In distribution networks, single-phase grounding occurrences in non-effectively grounded systems do not result in short-circuits, thus leading to low fault currents. Particularly in high-resistance grounding scenarios, fault currents become extremely low, increasing the risk of protection misjudgments. To enhance the speed and accuracy of self-healing during such faults, a distributed self-healing control method based on flexible grounding and zero-sequence current analysis for non-effectively grounded systems is proposed. This method employs peer-to-peer distributed self-healing and flexible grounding techniques to convert isolated or arc-suppressed neutral systems to low-resistance grounded systems. Additionally, a localization criterion unaffected by neutral grounding modes is introduced, utilizing deviations in zero-sequence current upstream and downstream of the fault as distinguishing characteristics. The proposed method is straightforward in principle and leverages existing terminal equipment for accurate and swift fault processing. Simulation results validate the method’s resilience to transition resistance and neutral grounding conditions, demonstrating its suitability for single-phase grounding fault localization across all system types. The research findings effectively ensure the accuracy and swiftness of self-healing during single-phase grounding faults in non-effectively grounded systems.","PeriodicalId":45651,"journal":{"name":"International Journal of Emerging Electric Power Systems","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed self-healing control of single-phase grounding fault in neutral point non-effective grounding system\",\"authors\":\"Silin He, Jiran Zhu, Di Zhang, Shengpeng Liu, Luxin Zhan, Chun Chen\",\"doi\":\"10.1515/ijeeps-2023-0420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In distribution networks, single-phase grounding occurrences in non-effectively grounded systems do not result in short-circuits, thus leading to low fault currents. Particularly in high-resistance grounding scenarios, fault currents become extremely low, increasing the risk of protection misjudgments. To enhance the speed and accuracy of self-healing during such faults, a distributed self-healing control method based on flexible grounding and zero-sequence current analysis for non-effectively grounded systems is proposed. This method employs peer-to-peer distributed self-healing and flexible grounding techniques to convert isolated or arc-suppressed neutral systems to low-resistance grounded systems. Additionally, a localization criterion unaffected by neutral grounding modes is introduced, utilizing deviations in zero-sequence current upstream and downstream of the fault as distinguishing characteristics. The proposed method is straightforward in principle and leverages existing terminal equipment for accurate and swift fault processing. Simulation results validate the method’s resilience to transition resistance and neutral grounding conditions, demonstrating its suitability for single-phase grounding fault localization across all system types. The research findings effectively ensure the accuracy and swiftness of self-healing during single-phase grounding faults in non-effectively grounded systems.\",\"PeriodicalId\":45651,\"journal\":{\"name\":\"International Journal of Emerging Electric Power Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Emerging Electric Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/ijeeps-2023-0420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Emerging Electric Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ijeeps-2023-0420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在配电网络中,非有效接地系统中的单相接地不会导致短路,因此故障电流较低。特别是在高电阻接地情况下,故障电流会变得极低,从而增加保护误判的风险。为了提高此类故障期间自愈的速度和准确性,提出了一种基于灵活接地和零序电流分析的分布式自愈控制方法,适用于非有效接地系统。该方法采用点对点分布式自愈和灵活接地技术,将隔离或电弧抑制中性点系统转换为低电阻接地系统。此外,还引入了不受中性点接地模式影响的定位标准,利用故障上游和下游零序电流的偏差作为区分特征。所提出的方法原理简单,可利用现有的终端设备进行准确、快速的故障处理。仿真结果验证了该方法对过渡电阻和中性点接地条件的适应性,证明其适用于所有系统类型的单相接地故障定位。研究成果有效确保了非有效接地系统单相接地故障自愈的准确性和快速性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distributed self-healing control of single-phase grounding fault in neutral point non-effective grounding system
In distribution networks, single-phase grounding occurrences in non-effectively grounded systems do not result in short-circuits, thus leading to low fault currents. Particularly in high-resistance grounding scenarios, fault currents become extremely low, increasing the risk of protection misjudgments. To enhance the speed and accuracy of self-healing during such faults, a distributed self-healing control method based on flexible grounding and zero-sequence current analysis for non-effectively grounded systems is proposed. This method employs peer-to-peer distributed self-healing and flexible grounding techniques to convert isolated or arc-suppressed neutral systems to low-resistance grounded systems. Additionally, a localization criterion unaffected by neutral grounding modes is introduced, utilizing deviations in zero-sequence current upstream and downstream of the fault as distinguishing characteristics. The proposed method is straightforward in principle and leverages existing terminal equipment for accurate and swift fault processing. Simulation results validate the method’s resilience to transition resistance and neutral grounding conditions, demonstrating its suitability for single-phase grounding fault localization across all system types. The research findings effectively ensure the accuracy and swiftness of self-healing during single-phase grounding faults in non-effectively grounded systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Emerging Electric Power Systems
International Journal of Emerging Electric Power Systems ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
3.00
自引率
10.00%
发文量
63
期刊介绍: International Journal of Emerging Electric Power Systems (IJEEPS) publishes significant research and scholarship related to latest and up-and-coming developments in power systems. The mandate of the journal is to assemble high quality papers from the recent research and development efforts in new technologies and techniques for generation, transmission, distribution and utilization of electric power. Topics The range of topics includes: electric power generation sources integration of unconventional sources into existing power systems generation planning and control new technologies and techniques for power transmission, distribution, protection, control and measurement power system analysis, economics, operation and stability deregulated power systems power system communication metering technologies demand-side management industrial electric power distribution and utilization systems.
期刊最新文献
Sensorless control method of induction motors with new feedback gain matrix and speed adaptive law for low speed range Analysis of green energy regeneration system for Electric Vehicles and Re estimation of carbon emissions in international trade based on evolutionary algorithms Protection strategy for fault detection in AC microgrid based on MVMD & differential CUSUM Optimal DGs coordination strategy for managing unbalanced and islanded distribution networks Design of novel UPFC based damping controller for solar PV integrated power system using arithmetic optimization algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1