二氧化钛中的铂单原子对光催化应用的影响

IF 1.7 4区 化学 Q4 CHEMISTRY, PHYSICAL Johnson Matthey Technology Review Pub Date : 2024-04-01 DOI:10.1595/205651324x17042087562424
C. A. G. Bezerra, D. Mamedov, N. Alonso-Vante
{"title":"二氧化钛中的铂单原子对光催化应用的影响","authors":"C. A. G. Bezerra, D. Mamedov, N. Alonso-Vante","doi":"10.1595/205651324x17042087562424","DOIUrl":null,"url":null,"abstract":"The photocatalytic effect of titania has long been studied with respect to water oxidation and hydrogen evolution. At present, the modification of this semiconducting material by platinum single atoms (Pt-SAs) represents an interesting approach that has been developed in the past decade and has given good results in the photocatalytic hydrogen evolution reaction (HER). Experimental studies have shown that the deposition of Pt-SAs on the titania surface, in aqueous systems, is a spontaneous process and can also be promoted by different reducing processes. Theoretical studies suggest that this deposition is a site-specific reaction, which occurs in oxygen vacancies on the titania surface. Under such conditions, the Pt-SAs are not in a metallic state, due to the interaction with neighbouring atoms of the substrate. This complex system can be probed using different advanced characterisation techniques, which provide a deeper understanding about the modified surface and how this modification improves the photocatalytic performance of titania.","PeriodicalId":14807,"journal":{"name":"Johnson Matthey Technology Review","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of Platinum Single Atoms in Titania for Photocatalytic Applications\",\"authors\":\"C. A. G. Bezerra, D. Mamedov, N. Alonso-Vante\",\"doi\":\"10.1595/205651324x17042087562424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The photocatalytic effect of titania has long been studied with respect to water oxidation and hydrogen evolution. At present, the modification of this semiconducting material by platinum single atoms (Pt-SAs) represents an interesting approach that has been developed in the past decade and has given good results in the photocatalytic hydrogen evolution reaction (HER). Experimental studies have shown that the deposition of Pt-SAs on the titania surface, in aqueous systems, is a spontaneous process and can also be promoted by different reducing processes. Theoretical studies suggest that this deposition is a site-specific reaction, which occurs in oxygen vacancies on the titania surface. Under such conditions, the Pt-SAs are not in a metallic state, due to the interaction with neighbouring atoms of the substrate. This complex system can be probed using different advanced characterisation techniques, which provide a deeper understanding about the modified surface and how this modification improves the photocatalytic performance of titania.\",\"PeriodicalId\":14807,\"journal\":{\"name\":\"Johnson Matthey Technology Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Johnson Matthey Technology Review\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1595/205651324x17042087562424\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Johnson Matthey Technology Review","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1595/205651324x17042087562424","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

长期以来,人们一直在研究二氧化钛在水氧化和氢进化方面的光催化效应。目前,用铂单原子(Pt-SAs)修饰这种半导体材料是过去十年中开发的一种有趣的方法,在光催化氢进化反应(HER)中取得了良好的效果。实验研究表明,在水性体系中,Pt-SAs 在二氧化钛表面的沉积是一个自发过程,也可由不同的还原过程促进。理论研究表明,这种沉积是一种特定位点反应,发生在二氧化钛表面的氧空位中。在这种条件下,由于与基底相邻原子的相互作用,Pt-SAs 并非处于金属状态。可以使用不同的先进表征技术对这一复杂系统进行探测,从而更深入地了解改性表面以及这种改性如何提高二氧化钛的光催化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Effect of Platinum Single Atoms in Titania for Photocatalytic Applications
The photocatalytic effect of titania has long been studied with respect to water oxidation and hydrogen evolution. At present, the modification of this semiconducting material by platinum single atoms (Pt-SAs) represents an interesting approach that has been developed in the past decade and has given good results in the photocatalytic hydrogen evolution reaction (HER). Experimental studies have shown that the deposition of Pt-SAs on the titania surface, in aqueous systems, is a spontaneous process and can also be promoted by different reducing processes. Theoretical studies suggest that this deposition is a site-specific reaction, which occurs in oxygen vacancies on the titania surface. Under such conditions, the Pt-SAs are not in a metallic state, due to the interaction with neighbouring atoms of the substrate. This complex system can be probed using different advanced characterisation techniques, which provide a deeper understanding about the modified surface and how this modification improves the photocatalytic performance of titania.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Johnson Matthey Technology Review
Johnson Matthey Technology Review CHEMISTRY, PHYSICAL-
CiteScore
4.30
自引率
4.30%
发文量
48
审稿时长
12 weeks
期刊介绍: Johnson Matthey Technology Review publishes articles, reviews and short reports on science enabling cleaner air, good health and efficient use of natural resources. Areas of application and fundamental science will be considered in the fields of:Advanced materials[...]Catalysis[...][...]Characterisation[...]Electrochemistry[...]Emissions control[...]Fine and speciality chemicals[...]Historical[...]Industrial processes[...]Materials and metallurgy[...]Modelling[...]PGM and specialist metallurgy[...]Pharmaceutical and medical science[...]Surface chemistry and coatings[...]Sustainable technologies.
期刊最新文献
Microplasma-Sprayed Titanium and Hydroxyapatite Coatings on Ti6Al4V Alloy: in vitro Biocompatibility and Corrosion Resistance   Choosing an Analogue to Digital Converter with Data Safety in Mind Structural-Phase State Of Austenitic 20GL Steel After Thermal Treatment by Normalizing and High-Temperature Tempering Magnetron Sputtering of Antibacterial and Antifungal Ta-Cu and Nb-Cu Coatings on 3D-Printed Porous Titanium Alloy Scaffolds Effectiveness Evaluation of Pyrometallurgy and Hydrometallurgy Methods in The Recycling Process of Nd-Fe-B Permanent Magnet and Rare Earth Metals Recovery : A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1