利用深度学习方法进行图像皮肤镜皮损分类:系统性文献综述

Arief Kelik Nugroho, Retantyo Wardoyo, Moh Edi Wibowo, H. Soebono
{"title":"利用深度学习方法进行图像皮肤镜皮损分类:系统性文献综述","authors":"Arief Kelik Nugroho, Retantyo Wardoyo, Moh Edi Wibowo, H. Soebono","doi":"10.11591/eei.v13i2.6077","DOIUrl":null,"url":null,"abstract":"Classifying skin lesions poses a significant challenge due to the distinctive characteristics and diverse shapes they can exhibit, particularly in identifying early-stage melanoma. To address the shortcomings of the prior method, a neural network-driven strategy was introduced to differentiate between two types of skin lesions based on dermoscopic images. This new approach comprises four key stages: i) initial image processing, ii) skin lesion segmentation, iii) feature extraction, and iv) classification using deep neural networks (DNNs). Computers can also provide more accurate diagnosis results. In the review process, the articles are analyzed and summarized to contribute to developing methods or application development in skin lesion diagnosis. The stages include defining the relevant theory, input data, methods used (architecture and modules), training process, and model evaluation. This review also explores information based on trends and users, emphasizing the skin lesion segmentation process, skin lesion classification process, and minimal datasets as recommendations for future research.","PeriodicalId":37619,"journal":{"name":"Bulletin of Electrical Engineering and Informatics","volume":"59 35","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image dermoscopy skin lesion classification using deep learning method: systematic literature review\",\"authors\":\"Arief Kelik Nugroho, Retantyo Wardoyo, Moh Edi Wibowo, H. Soebono\",\"doi\":\"10.11591/eei.v13i2.6077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classifying skin lesions poses a significant challenge due to the distinctive characteristics and diverse shapes they can exhibit, particularly in identifying early-stage melanoma. To address the shortcomings of the prior method, a neural network-driven strategy was introduced to differentiate between two types of skin lesions based on dermoscopic images. This new approach comprises four key stages: i) initial image processing, ii) skin lesion segmentation, iii) feature extraction, and iv) classification using deep neural networks (DNNs). Computers can also provide more accurate diagnosis results. In the review process, the articles are analyzed and summarized to contribute to developing methods or application development in skin lesion diagnosis. The stages include defining the relevant theory, input data, methods used (architecture and modules), training process, and model evaluation. This review also explores information based on trends and users, emphasizing the skin lesion segmentation process, skin lesion classification process, and minimal datasets as recommendations for future research.\",\"PeriodicalId\":37619,\"journal\":{\"name\":\"Bulletin of Electrical Engineering and Informatics\",\"volume\":\"59 35\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Electrical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/eei.v13i2.6077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/eei.v13i2.6077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

由于皮肤病变可能表现出独特的特征和不同的形状,因此对皮肤病变进行分类是一项重大挑战,尤其是在识别早期黑色素瘤方面。针对先前方法的不足,我们引入了一种神经网络驱动策略,根据皮肤镜图像区分两种类型的皮肤病变。这种新方法包括四个关键阶段:i) 初始图像处理;ii) 皮肤病变分割;iii) 特征提取;以及 iv) 利用深度神经网络(DNN)进行分类。计算机还能提供更准确的诊断结果。在综述过程中,对文章进行分析和总结,以促进皮损诊断方法或应用的开发。这些阶段包括定义相关理论、输入数据、所用方法(架构和模块)、训练过程和模型评估。本综述还根据趋势和用户情况探讨了相关信息,强调了皮损分割过程、皮损分类过程和最小数据集,并以此作为未来研究的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image dermoscopy skin lesion classification using deep learning method: systematic literature review
Classifying skin lesions poses a significant challenge due to the distinctive characteristics and diverse shapes they can exhibit, particularly in identifying early-stage melanoma. To address the shortcomings of the prior method, a neural network-driven strategy was introduced to differentiate between two types of skin lesions based on dermoscopic images. This new approach comprises four key stages: i) initial image processing, ii) skin lesion segmentation, iii) feature extraction, and iv) classification using deep neural networks (DNNs). Computers can also provide more accurate diagnosis results. In the review process, the articles are analyzed and summarized to contribute to developing methods or application development in skin lesion diagnosis. The stages include defining the relevant theory, input data, methods used (architecture and modules), training process, and model evaluation. This review also explores information based on trends and users, emphasizing the skin lesion segmentation process, skin lesion classification process, and minimal datasets as recommendations for future research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of Electrical Engineering and Informatics
Bulletin of Electrical Engineering and Informatics Computer Science-Computer Science (miscellaneous)
CiteScore
3.60
自引率
0.00%
发文量
0
期刊介绍: Bulletin of Electrical Engineering and Informatics publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: Computer Science, Computer Engineering and Informatics[...] Electronics[...] Electrical and Power Engineering[...] Telecommunication and Information Technology[...]Instrumentation and Control Engineering[...]
期刊最新文献
An optimistic-pessimistic game cross-efficiency method based on a Gibbs entropy model for ranking decision making units A study on the solution of interval linear fractional programming problem FPGA implementation of DTCWT architecture's high-speed DA structure for OFDM-based transceiver with CS Mathematics for 2D face recognition from real time image data set using deep learning techniques A comprehensive survey on several fire management approaches in wireless sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1