Interca:"自动 "解释多重对应分析(MCA)结果的 R 库

IF 12.3 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Applied Computing and Informatics Pub Date : 2024-04-01 DOI:10.1108/aci-09-2023-0028
Stratos Moschidis, Angelos I. Markos, Dimosthenis Ioannidis
{"title":"Interca:\"自动 \"解释多重对应分析(MCA)结果的 R 库","authors":"Stratos Moschidis, Angelos I. Markos, Dimosthenis Ioannidis","doi":"10.1108/aci-09-2023-0028","DOIUrl":null,"url":null,"abstract":"PurposeThe purpose of this paper is to develop a software-library in the R programming language that implements the concepts of the interpretive coordinate, interpretive axis and interpretive plane. This allows for the automatic and reliable interpretation of results from the multiple correspondence analysis (MCA) as previously proposed and published. Consequently, the users can seamlessly apply these concepts to their data, both via R commands and a corresponding graphical interface.Design/methodology/approachWithin the context of this study, and through extensive literature review, the advantages of developing software using the Shiny library were examined. This library allows for the development of full-stack applications for R users without the need for knowledge of the corresponding technologies required for the development of complex applications. Additionally, the structural components of a Shiny application were presented, leading ultimately to the proposed software application.FindingsSoftware utilizing the Shiny library enables nonexpert developers to rapidly develop specialized applications, either to present or to assist in the understanding of objects or concepts that are scientifically intriguing and complex. Specifically, with this proposed application, the users can promptly and effectively apply the scientific concepts addressed in this study to their data. Additionally, they can dynamically generate charts and reports that are readily available for download and sharing.Research limitations/implicationsThe proposed package is an implementation of the fundamental concepts of the exploratory MCA method. In the next step, discoveries from the geometric data analysis will be added as features to provide more comprehensive information to the users.Practical implicationsThe practical implications of this work include the dissemination of the method’s use to a broader audience. Additionally, the decision to implement it with open-source code will result in the integration of the package’s functions by other third-party user packages.Originality/valueThe proposed software introduces the initial implementation of concepts such as interpretive coordination, the interpretive axis and the interpretive plane. This package aims to broaden and simplify the application of these concepts to benefit stakeholders in scientific research. The software can be accessed for free in a code repository, the link to which is provided in the full text of the study.","PeriodicalId":37348,"journal":{"name":"Applied Computing and Informatics","volume":null,"pages":null},"PeriodicalIF":12.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interca: an R library implementing “automatic” interpretation of results of multiple correspondence analysis (MCA)\",\"authors\":\"Stratos Moschidis, Angelos I. Markos, Dimosthenis Ioannidis\",\"doi\":\"10.1108/aci-09-2023-0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThe purpose of this paper is to develop a software-library in the R programming language that implements the concepts of the interpretive coordinate, interpretive axis and interpretive plane. This allows for the automatic and reliable interpretation of results from the multiple correspondence analysis (MCA) as previously proposed and published. Consequently, the users can seamlessly apply these concepts to their data, both via R commands and a corresponding graphical interface.Design/methodology/approachWithin the context of this study, and through extensive literature review, the advantages of developing software using the Shiny library were examined. This library allows for the development of full-stack applications for R users without the need for knowledge of the corresponding technologies required for the development of complex applications. Additionally, the structural components of a Shiny application were presented, leading ultimately to the proposed software application.FindingsSoftware utilizing the Shiny library enables nonexpert developers to rapidly develop specialized applications, either to present or to assist in the understanding of objects or concepts that are scientifically intriguing and complex. Specifically, with this proposed application, the users can promptly and effectively apply the scientific concepts addressed in this study to their data. Additionally, they can dynamically generate charts and reports that are readily available for download and sharing.Research limitations/implicationsThe proposed package is an implementation of the fundamental concepts of the exploratory MCA method. In the next step, discoveries from the geometric data analysis will be added as features to provide more comprehensive information to the users.Practical implicationsThe practical implications of this work include the dissemination of the method’s use to a broader audience. Additionally, the decision to implement it with open-source code will result in the integration of the package’s functions by other third-party user packages.Originality/valueThe proposed software introduces the initial implementation of concepts such as interpretive coordination, the interpretive axis and the interpretive plane. This package aims to broaden and simplify the application of these concepts to benefit stakeholders in scientific research. The software can be accessed for free in a code repository, the link to which is provided in the full text of the study.\",\"PeriodicalId\":37348,\"journal\":{\"name\":\"Applied Computing and Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.3000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/aci-09-2023-0028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/aci-09-2023-0028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在用 R 编程语言开发一个软件库,以实现解释坐标、解释轴和解释平面的概念。这样就可以自动、可靠地解释之前提出和发表的多重对应分析(MCA)的结果。因此,用户可以通过 R 命令和相应的图形界面将这些概念无缝地应用到他们的数据中。设计/方法/途径在本研究的背景下,通过广泛的文献查阅,我们研究了使用 Shiny 库开发软件的优势。该库允许 R 用户开发全栈应用程序,而无需掌握开发复杂应用程序所需的相应技术。此外,还介绍了 Shiny 应用程序的结构组件,最终得出了所提议的应用软件。研究结果利用 Shiny 库开发的软件可以让非专业开发人员快速开发专门的应用软件,以展示或帮助理解具有科学意义和复杂性的对象或概念。具体来说,有了这个拟议的应用程序,用户就可以迅速有效地将本研究中涉及的科学概念应用到他们的数据中。此外,他们还可以动态生成图表和报告,这些图表和报告可随时下载和共享。下一步,几何数据分析的发现将作为功能添加到软件包中,为用户提供更全面的信息。原创性/价值所提议的软件引入了解释性协调、解释性轴线和解释性平面等概念的初步实现。该软件包旨在扩大和简化这些概念的应用,使科学研究中的利益相关者受益。该软件可在代码库中免费获取,链接见研究报告全文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interca: an R library implementing “automatic” interpretation of results of multiple correspondence analysis (MCA)
PurposeThe purpose of this paper is to develop a software-library in the R programming language that implements the concepts of the interpretive coordinate, interpretive axis and interpretive plane. This allows for the automatic and reliable interpretation of results from the multiple correspondence analysis (MCA) as previously proposed and published. Consequently, the users can seamlessly apply these concepts to their data, both via R commands and a corresponding graphical interface.Design/methodology/approachWithin the context of this study, and through extensive literature review, the advantages of developing software using the Shiny library were examined. This library allows for the development of full-stack applications for R users without the need for knowledge of the corresponding technologies required for the development of complex applications. Additionally, the structural components of a Shiny application were presented, leading ultimately to the proposed software application.FindingsSoftware utilizing the Shiny library enables nonexpert developers to rapidly develop specialized applications, either to present or to assist in the understanding of objects or concepts that are scientifically intriguing and complex. Specifically, with this proposed application, the users can promptly and effectively apply the scientific concepts addressed in this study to their data. Additionally, they can dynamically generate charts and reports that are readily available for download and sharing.Research limitations/implicationsThe proposed package is an implementation of the fundamental concepts of the exploratory MCA method. In the next step, discoveries from the geometric data analysis will be added as features to provide more comprehensive information to the users.Practical implicationsThe practical implications of this work include the dissemination of the method’s use to a broader audience. Additionally, the decision to implement it with open-source code will result in the integration of the package’s functions by other third-party user packages.Originality/valueThe proposed software introduces the initial implementation of concepts such as interpretive coordination, the interpretive axis and the interpretive plane. This package aims to broaden and simplify the application of these concepts to benefit stakeholders in scientific research. The software can be accessed for free in a code repository, the link to which is provided in the full text of the study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computing and Informatics
Applied Computing and Informatics Computer Science-Information Systems
CiteScore
12.20
自引率
0.00%
发文量
0
审稿时长
39 weeks
期刊介绍: Applied Computing and Informatics aims to be timely in disseminating leading-edge knowledge to researchers, practitioners and academics whose interest is in the latest developments in applied computing and information systems concepts, strategies, practices, tools and technologies. In particular, the journal encourages research studies that have significant contributions to make to the continuous development and improvement of IT practices in the Kingdom of Saudi Arabia and other countries. By doing so, the journal attempts to bridge the gap between the academic and industrial community, and therefore, welcomes theoretically grounded, methodologically sound research studies that address various IT-related problems and innovations of an applied nature. The journal will serve as a forum for practitioners, researchers, managers and IT policy makers to share their knowledge and experience in the design, development, implementation, management and evaluation of various IT applications. Contributions may deal with, but are not limited to: • Internet and E-Commerce Architecture, Infrastructure, Models, Deployment Strategies and Methodologies. • E-Business and E-Government Adoption. • Mobile Commerce and their Applications. • Applied Telecommunication Networks. • Software Engineering Approaches, Methodologies, Techniques, and Tools. • Applied Data Mining and Warehousing. • Information Strategic Planning and Recourse Management. • Applied Wireless Computing. • Enterprise Resource Planning Systems. • IT Education. • Societal, Cultural, and Ethical Issues of IT. • Policy, Legal and Global Issues of IT. • Enterprise Database Technology.
期刊最新文献
Gender variability in machine learning based subcortical neuroimaging for Parkinson’s disease diagnosis ChatGPT-powered deep learning: elevating brain tumor detection in MRI scans Bi-directional adaptive enhanced A* algorithm for mobile robot navigation Interca: an R library implementing “automatic” interpretation of results of multiple correspondence analysis (MCA) Wine quality assessment through lightweight deep learning: integrating 1D-CNN and LSTM for analyzing electronic nose VOCs signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1