G. Shidaganti, Rithvik Shetty, Tharun Edara, Prashanth Srinivas, Sai Chandu Tammineni
{"title":"针对特定任务的自然语言处理模型探索性分析","authors":"G. Shidaganti, Rithvik Shetty, Tharun Edara, Prashanth Srinivas, Sai Chandu Tammineni","doi":"10.11591/eei.v13i2.6360","DOIUrl":null,"url":null,"abstract":"Natural language processing (NLP) is a technology that has become widespread in the area of human language understanding and analysis. A range of text processing tasks such as summarisation, semantic analysis, classification, question-answering, and natural language inference are commonly performed using it. The dilemma of picking a model to help us in our task is still there. It’s becoming an impediment. This is where we are trying to determine which modern NLP models are better suited for the tasks set out above in order to compare them with datasets like SQuAD and GLUE. For comparison, BERT, RoBERTa, distilBERT, BART, ALBERT, and text-to-text transfer transformer (T5) models have been used in this study. The aim is to understand the underlying architecture, its effects on the use case and also to understand where it falls short. Thus, we were able to observe that RoBERTa was more effective against the models ALBERT, distilBERT, and BERT in terms of tasks related to semantic analysis, natural language inference, and question-answering. The reason is due to the dynamic masking present in RoBERTa. For summarisation, even though BART and T5 models have very similar architecture the BART model has performed slightly better than the T5 model.","PeriodicalId":37619,"journal":{"name":"Bulletin of Electrical Engineering and Informatics","volume":"47 49","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploratory analysis on the natural language processing models for task specific purposes\",\"authors\":\"G. Shidaganti, Rithvik Shetty, Tharun Edara, Prashanth Srinivas, Sai Chandu Tammineni\",\"doi\":\"10.11591/eei.v13i2.6360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural language processing (NLP) is a technology that has become widespread in the area of human language understanding and analysis. A range of text processing tasks such as summarisation, semantic analysis, classification, question-answering, and natural language inference are commonly performed using it. The dilemma of picking a model to help us in our task is still there. It’s becoming an impediment. This is where we are trying to determine which modern NLP models are better suited for the tasks set out above in order to compare them with datasets like SQuAD and GLUE. For comparison, BERT, RoBERTa, distilBERT, BART, ALBERT, and text-to-text transfer transformer (T5) models have been used in this study. The aim is to understand the underlying architecture, its effects on the use case and also to understand where it falls short. Thus, we were able to observe that RoBERTa was more effective against the models ALBERT, distilBERT, and BERT in terms of tasks related to semantic analysis, natural language inference, and question-answering. The reason is due to the dynamic masking present in RoBERTa. For summarisation, even though BART and T5 models have very similar architecture the BART model has performed slightly better than the T5 model.\",\"PeriodicalId\":37619,\"journal\":{\"name\":\"Bulletin of Electrical Engineering and Informatics\",\"volume\":\"47 49\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Electrical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/eei.v13i2.6360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/eei.v13i2.6360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Exploratory analysis on the natural language processing models for task specific purposes
Natural language processing (NLP) is a technology that has become widespread in the area of human language understanding and analysis. A range of text processing tasks such as summarisation, semantic analysis, classification, question-answering, and natural language inference are commonly performed using it. The dilemma of picking a model to help us in our task is still there. It’s becoming an impediment. This is where we are trying to determine which modern NLP models are better suited for the tasks set out above in order to compare them with datasets like SQuAD and GLUE. For comparison, BERT, RoBERTa, distilBERT, BART, ALBERT, and text-to-text transfer transformer (T5) models have been used in this study. The aim is to understand the underlying architecture, its effects on the use case and also to understand where it falls short. Thus, we were able to observe that RoBERTa was more effective against the models ALBERT, distilBERT, and BERT in terms of tasks related to semantic analysis, natural language inference, and question-answering. The reason is due to the dynamic masking present in RoBERTa. For summarisation, even though BART and T5 models have very similar architecture the BART model has performed slightly better than the T5 model.
期刊介绍:
Bulletin of Electrical Engineering and Informatics publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: Computer Science, Computer Engineering and Informatics[...] Electronics[...] Electrical and Power Engineering[...] Telecommunication and Information Technology[...]Instrumentation and Control Engineering[...]