用于职业安置准确性预测的机器学习分类模型

Hendri Mahmud Nawawi, Agung Baitul Hikmah, Ali Mustopa, Ganda Wijaya
{"title":"用于职业安置准确性预测的机器学习分类模型","authors":"Hendri Mahmud Nawawi, Agung Baitul Hikmah, Ali Mustopa, Ganda Wijaya","doi":"10.33020/saintekom.v14i1.512","DOIUrl":null,"url":null,"abstract":"The complexity of the job market requires individuals and organizations to understand the trends and needs of the world of work. One of the main challenges is the right career placement. That is becoming increasingly popular is the use of Machine Learning  algorithms in the decision-making process. ML classification models such as Random Forest, Decision Tree, Naïve Bayes, KNN, and SVM have demonstrated their potential in uncovering hidden patterns from data, including a person's educational history, work experience and interests. In this research, the application of the ML classification model is aimed at predicting career placement. From the data sample used of 215, this research evaluates the effectiveness of various ML models in the context of career placement. As a result, the Random Forest Model is superior to other proposed models with an accuracy value of 87% and an AUC/ROC value of 0.93 which indicates a very good classification value. Meanwhile, the SVM model with Linear Kernel shows the lowest performance with an accuracy value of 67%. Apart from getting information on the best accuracy and AUC/ROC values, the results of this research found that the 'ssc_presentage' attribute (high school exam percentage) is an important factor in career placement decisions.","PeriodicalId":359182,"journal":{"name":"Jurnal SAINTEKOM","volume":"19 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model Klasifikasi Machine Learning untuk Prediksi Ketepatan Penempatan Karir\",\"authors\":\"Hendri Mahmud Nawawi, Agung Baitul Hikmah, Ali Mustopa, Ganda Wijaya\",\"doi\":\"10.33020/saintekom.v14i1.512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The complexity of the job market requires individuals and organizations to understand the trends and needs of the world of work. One of the main challenges is the right career placement. That is becoming increasingly popular is the use of Machine Learning  algorithms in the decision-making process. ML classification models such as Random Forest, Decision Tree, Naïve Bayes, KNN, and SVM have demonstrated their potential in uncovering hidden patterns from data, including a person's educational history, work experience and interests. In this research, the application of the ML classification model is aimed at predicting career placement. From the data sample used of 215, this research evaluates the effectiveness of various ML models in the context of career placement. As a result, the Random Forest Model is superior to other proposed models with an accuracy value of 87% and an AUC/ROC value of 0.93 which indicates a very good classification value. Meanwhile, the SVM model with Linear Kernel shows the lowest performance with an accuracy value of 67%. Apart from getting information on the best accuracy and AUC/ROC values, the results of this research found that the 'ssc_presentage' attribute (high school exam percentage) is an important factor in career placement decisions.\",\"PeriodicalId\":359182,\"journal\":{\"name\":\"Jurnal SAINTEKOM\",\"volume\":\"19 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal SAINTEKOM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33020/saintekom.v14i1.512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal SAINTEKOM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33020/saintekom.v14i1.512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

就业市场的复杂性要求个人和组织了解职场的趋势和需求。其中一个主要挑战就是正确的职业定位。在决策过程中使用机器学习算法正变得越来越流行。随机森林(Random Forest)、决策树(Decision Tree)、奈夫贝叶斯(Naïve Bayes)、KNN 和 SVM 等 ML 分类模型已经证明了它们在从数据中发现隐藏模式(包括个人的教育历史、工作经验和兴趣)方面的潜力。在本研究中,应用 ML 分类模型的目的是预测职业安置。从 215 个数据样本中,本研究评估了各种 ML 模型在职业安置方面的有效性。结果显示,随机森林模型的准确率为 87%,AUC/ROC 值为 0.93,分类效果非常好,优于其他建议的模型。与此同时,采用线性核的 SVM 模型准确率最低,仅为 67%。除了获得最佳准确率和 AUC/ROC 值的信息外,本研究结果还发现,"ssc_presentage "属性(高中考试百分比)是职业安置决策的一个重要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model Klasifikasi Machine Learning untuk Prediksi Ketepatan Penempatan Karir
The complexity of the job market requires individuals and organizations to understand the trends and needs of the world of work. One of the main challenges is the right career placement. That is becoming increasingly popular is the use of Machine Learning  algorithms in the decision-making process. ML classification models such as Random Forest, Decision Tree, Naïve Bayes, KNN, and SVM have demonstrated their potential in uncovering hidden patterns from data, including a person's educational history, work experience and interests. In this research, the application of the ML classification model is aimed at predicting career placement. From the data sample used of 215, this research evaluates the effectiveness of various ML models in the context of career placement. As a result, the Random Forest Model is superior to other proposed models with an accuracy value of 87% and an AUC/ROC value of 0.93 which indicates a very good classification value. Meanwhile, the SVM model with Linear Kernel shows the lowest performance with an accuracy value of 67%. Apart from getting information on the best accuracy and AUC/ROC values, the results of this research found that the 'ssc_presentage' attribute (high school exam percentage) is an important factor in career placement decisions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Penerapan Algoritma K-Means untuk Klasterisasi Produksi Budidaya Perikanan Provinsi Sulawesi Utara Implementasi Aplikasi Laporjalanku untuk Pemetaan dan Pelaporan Jalan Rusak di Wilayah Kota Tarakan Pengukuran Kematangan Keamanan Siber pada Perusahaan Teknologi Informasi dengan Framework Center for Internet Security Controls Klasifikasi Sentimen Terhadap Kualitas Aplikasi Bahan Ajar Digital Akademik Universitas Terbuka di Google Play Evaluasi Keamanan Teknologi Informasi Menggunakan Indeks Keamanan Informasi 5.0 dan ISO/EIC 27001:2022
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1