Adelaide Gallo, T. Román, M. Paolini, Nicola Cappello, R. Guzzon, F. Carrau, Rémi Schneider, Roberto Larcher
{"title":"顺序接种和联合接种策略下葡萄汉森氏菌 Hv205 葡萄酒的香气特征","authors":"Adelaide Gallo, T. Román, M. Paolini, Nicola Cappello, R. Guzzon, F. Carrau, Rémi Schneider, Roberto Larcher","doi":"10.3390/fermentation10040191","DOIUrl":null,"url":null,"abstract":"Hanseniaspora vineae (Hv) is a non-Saccharomyces yeast with unique metabolic features, making it appealing for wine production. However, Hv presents high nutritional requirements that may lead to slow fermentation. This study investigated the impact of sequential inoculation of Saccharomyces cerevisiae (Sc) in white winemaking at different time points (24, 48, 74, 100 and 200 h) during Hv fermentation and compared them to simultaneous inoculations. The 200 h protocol extended fermentation by an average of 13 days compared to pure Sc, decreasing with earlier sequential inoculation. Sc wines were richer in isoamyl acetate and ethyl hexanoate than Hv wines, with no significant differences among inoculation protocols. β-phenylethyl acetate was increased in Hv wines, particularly in the 24 h protocol. The 2-phenylethanol concentration was negatively correlated with the S. cerevisiae inoculation delay. Hv altered the wine aroma features, enhancing the compounds associated with rose-like scents. Reducing the Sc inoculation delay aligned Hv with industrial standards while maintaining increased β-phenylethyl acetate production. However, co-inoculation with Sc seems to better meet the Hv requirement without sacrificing the main aromatic features of Hv, demonstrating faster sugar depletion and higher acetate and ethyl ester contents, suggesting that co-inoculation yields a more modulable wine aroma profile.","PeriodicalId":12379,"journal":{"name":"Fermentation","volume":"25 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aroma Features of Hanseniaspora vineae Hv205 Wines in Sequential and Co-Inoculation Strategies\",\"authors\":\"Adelaide Gallo, T. Román, M. Paolini, Nicola Cappello, R. Guzzon, F. Carrau, Rémi Schneider, Roberto Larcher\",\"doi\":\"10.3390/fermentation10040191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hanseniaspora vineae (Hv) is a non-Saccharomyces yeast with unique metabolic features, making it appealing for wine production. However, Hv presents high nutritional requirements that may lead to slow fermentation. This study investigated the impact of sequential inoculation of Saccharomyces cerevisiae (Sc) in white winemaking at different time points (24, 48, 74, 100 and 200 h) during Hv fermentation and compared them to simultaneous inoculations. The 200 h protocol extended fermentation by an average of 13 days compared to pure Sc, decreasing with earlier sequential inoculation. Sc wines were richer in isoamyl acetate and ethyl hexanoate than Hv wines, with no significant differences among inoculation protocols. β-phenylethyl acetate was increased in Hv wines, particularly in the 24 h protocol. The 2-phenylethanol concentration was negatively correlated with the S. cerevisiae inoculation delay. Hv altered the wine aroma features, enhancing the compounds associated with rose-like scents. Reducing the Sc inoculation delay aligned Hv with industrial standards while maintaining increased β-phenylethyl acetate production. However, co-inoculation with Sc seems to better meet the Hv requirement without sacrificing the main aromatic features of Hv, demonstrating faster sugar depletion and higher acetate and ethyl ester contents, suggesting that co-inoculation yields a more modulable wine aroma profile.\",\"PeriodicalId\":12379,\"journal\":{\"name\":\"Fermentation\",\"volume\":\"25 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fermentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fermentation10040191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fermentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fermentation10040191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Aroma Features of Hanseniaspora vineae Hv205 Wines in Sequential and Co-Inoculation Strategies
Hanseniaspora vineae (Hv) is a non-Saccharomyces yeast with unique metabolic features, making it appealing for wine production. However, Hv presents high nutritional requirements that may lead to slow fermentation. This study investigated the impact of sequential inoculation of Saccharomyces cerevisiae (Sc) in white winemaking at different time points (24, 48, 74, 100 and 200 h) during Hv fermentation and compared them to simultaneous inoculations. The 200 h protocol extended fermentation by an average of 13 days compared to pure Sc, decreasing with earlier sequential inoculation. Sc wines were richer in isoamyl acetate and ethyl hexanoate than Hv wines, with no significant differences among inoculation protocols. β-phenylethyl acetate was increased in Hv wines, particularly in the 24 h protocol. The 2-phenylethanol concentration was negatively correlated with the S. cerevisiae inoculation delay. Hv altered the wine aroma features, enhancing the compounds associated with rose-like scents. Reducing the Sc inoculation delay aligned Hv with industrial standards while maintaining increased β-phenylethyl acetate production. However, co-inoculation with Sc seems to better meet the Hv requirement without sacrificing the main aromatic features of Hv, demonstrating faster sugar depletion and higher acetate and ethyl ester contents, suggesting that co-inoculation yields a more modulable wine aroma profile.