Jarelh Galdos, Nikolai Lopez Colque, Angie Medina Rodirguez, Jorge Huarca Quispe, Jorge Rendulich, Erasmo Sulla Espinoza
{"title":"对应用于体力活动中受运动伪影污染的 ecg 信号的 LMS 衍生算法进行比较和评估","authors":"Jarelh Galdos, Nikolai Lopez Colque, Angie Medina Rodirguez, Jorge Huarca Quispe, Jorge Rendulich, Erasmo Sulla Espinoza","doi":"10.35784/acs-2024-10","DOIUrl":null,"url":null,"abstract":"The acquisition of ECG signals offers physicians and specialists a very important tool in the diagnosis of cardiovascular diseases. However, very often these signals are affected by noise from various sources, including noise generated by movement during physical activity. This type of noise is known as Motion Artifact (MA) which changes the waveform of the signal, leading to erroneous readings. The elimination of this noise is performed by different filtering techniques, where the adaptive filtering using the LMS (least mean squares) algorithm stands out. The objective of this article is to determine which algorithms best deal with motion artifacts, taking into account the use of instruments or wearable equipment, in different conditions of physical activity. A comparison between different algorithms derived from LMS (NLMS, PNLMS and IPNLM) used in adaptive filtering is carried out using indicators such as: Pearson's Correlation Coefficient, Signal to Noise Ratio (SNR) and Mean Squared Error (MSE) as metrics to evaluate them. For this purpose, the mHealth database was used, which contains ECG signals taken during moderate to medium intensity physical activities. The results show that filtering by IPNLMS as well as PNLMS offers an improvement both visually and in terms of SNR, Pearson, and MSE indicators.","PeriodicalId":36379,"journal":{"name":"Applied Computer Science","volume":"45 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COMPARISON AND EVALUATION OF LMS-DERIVED ALGORITHMS APPLIED ON ECG SIGNALS CONTAMINATED WITH MOTION ARTIFACT DURING PHYSICAL ACTIVITIES\",\"authors\":\"Jarelh Galdos, Nikolai Lopez Colque, Angie Medina Rodirguez, Jorge Huarca Quispe, Jorge Rendulich, Erasmo Sulla Espinoza\",\"doi\":\"10.35784/acs-2024-10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The acquisition of ECG signals offers physicians and specialists a very important tool in the diagnosis of cardiovascular diseases. However, very often these signals are affected by noise from various sources, including noise generated by movement during physical activity. This type of noise is known as Motion Artifact (MA) which changes the waveform of the signal, leading to erroneous readings. The elimination of this noise is performed by different filtering techniques, where the adaptive filtering using the LMS (least mean squares) algorithm stands out. The objective of this article is to determine which algorithms best deal with motion artifacts, taking into account the use of instruments or wearable equipment, in different conditions of physical activity. A comparison between different algorithms derived from LMS (NLMS, PNLMS and IPNLM) used in adaptive filtering is carried out using indicators such as: Pearson's Correlation Coefficient, Signal to Noise Ratio (SNR) and Mean Squared Error (MSE) as metrics to evaluate them. For this purpose, the mHealth database was used, which contains ECG signals taken during moderate to medium intensity physical activities. The results show that filtering by IPNLMS as well as PNLMS offers an improvement both visually and in terms of SNR, Pearson, and MSE indicators.\",\"PeriodicalId\":36379,\"journal\":{\"name\":\"Applied Computer Science\",\"volume\":\"45 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35784/acs-2024-10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35784/acs-2024-10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
COMPARISON AND EVALUATION OF LMS-DERIVED ALGORITHMS APPLIED ON ECG SIGNALS CONTAMINATED WITH MOTION ARTIFACT DURING PHYSICAL ACTIVITIES
The acquisition of ECG signals offers physicians and specialists a very important tool in the diagnosis of cardiovascular diseases. However, very often these signals are affected by noise from various sources, including noise generated by movement during physical activity. This type of noise is known as Motion Artifact (MA) which changes the waveform of the signal, leading to erroneous readings. The elimination of this noise is performed by different filtering techniques, where the adaptive filtering using the LMS (least mean squares) algorithm stands out. The objective of this article is to determine which algorithms best deal with motion artifacts, taking into account the use of instruments or wearable equipment, in different conditions of physical activity. A comparison between different algorithms derived from LMS (NLMS, PNLMS and IPNLM) used in adaptive filtering is carried out using indicators such as: Pearson's Correlation Coefficient, Signal to Noise Ratio (SNR) and Mean Squared Error (MSE) as metrics to evaluate them. For this purpose, the mHealth database was used, which contains ECG signals taken during moderate to medium intensity physical activities. The results show that filtering by IPNLMS as well as PNLMS offers an improvement both visually and in terms of SNR, Pearson, and MSE indicators.