{"title":"基于自然邻域的特定标签欠采样,用于不平衡多标签数据","authors":"Payel Sadhukhan, Sarbani Palit","doi":"10.1007/s11634-024-00589-3","DOIUrl":null,"url":null,"abstract":"<div><p>This work presents a novel undersampling scheme to tackle the imbalance problem in multi-label datasets. We use the principles of the natural nearest neighborhood and follow a paradigm of label-specific undersampling. Natural-nearest neighborhood is a parameter-free principle. Our scheme’s novelty lies in exploring the parameter-optimization-free natural nearest neighborhood principles. The class imbalance problem is particularly challenging in a multi-label context, as the imbalance ratio and the majority–minority distributions vary from label to label. Consequently, the majority–minority class overlaps also vary across the labels. Working on this aspect, we propose a framework where a single natural neighbor search is sufficient to identify all the label-specific overlaps. Natural neighbor information is also used to find the key lattices of the majority class (which we do not undersample). The performance of the proposed method, NaNUML, indicates its ability to mitigate the class-imbalance issue in multi-label datasets to a considerable extent. We could also establish a statistically superior performance over other competing methods several times. An empirical study involving twelve real-world multi-label datasets, seven competing methods, and four evaluating metrics—shows that the proposed method effectively handles the class-imbalance issue in multi-label datasets. In this work, we have presented a novel label-specific undersampling scheme, NaNUML, for multi-label datasets. NaNUML is based on the parameter-free natural neighbor search and the key factor, neighborhood size ‘k’ is determined without invoking any parameter optimization.</p></div>","PeriodicalId":49270,"journal":{"name":"Advances in Data Analysis and Classification","volume":"18 3","pages":"723 - 744"},"PeriodicalIF":1.4000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural-neighborhood based, label-specific undersampling for imbalanced, multi-label data\",\"authors\":\"Payel Sadhukhan, Sarbani Palit\",\"doi\":\"10.1007/s11634-024-00589-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work presents a novel undersampling scheme to tackle the imbalance problem in multi-label datasets. We use the principles of the natural nearest neighborhood and follow a paradigm of label-specific undersampling. Natural-nearest neighborhood is a parameter-free principle. Our scheme’s novelty lies in exploring the parameter-optimization-free natural nearest neighborhood principles. The class imbalance problem is particularly challenging in a multi-label context, as the imbalance ratio and the majority–minority distributions vary from label to label. Consequently, the majority–minority class overlaps also vary across the labels. Working on this aspect, we propose a framework where a single natural neighbor search is sufficient to identify all the label-specific overlaps. Natural neighbor information is also used to find the key lattices of the majority class (which we do not undersample). The performance of the proposed method, NaNUML, indicates its ability to mitigate the class-imbalance issue in multi-label datasets to a considerable extent. We could also establish a statistically superior performance over other competing methods several times. An empirical study involving twelve real-world multi-label datasets, seven competing methods, and four evaluating metrics—shows that the proposed method effectively handles the class-imbalance issue in multi-label datasets. In this work, we have presented a novel label-specific undersampling scheme, NaNUML, for multi-label datasets. NaNUML is based on the parameter-free natural neighbor search and the key factor, neighborhood size ‘k’ is determined without invoking any parameter optimization.</p></div>\",\"PeriodicalId\":49270,\"journal\":{\"name\":\"Advances in Data Analysis and Classification\",\"volume\":\"18 3\",\"pages\":\"723 - 744\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Data Analysis and Classification\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11634-024-00589-3\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Analysis and Classification","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s11634-024-00589-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Natural-neighborhood based, label-specific undersampling for imbalanced, multi-label data
This work presents a novel undersampling scheme to tackle the imbalance problem in multi-label datasets. We use the principles of the natural nearest neighborhood and follow a paradigm of label-specific undersampling. Natural-nearest neighborhood is a parameter-free principle. Our scheme’s novelty lies in exploring the parameter-optimization-free natural nearest neighborhood principles. The class imbalance problem is particularly challenging in a multi-label context, as the imbalance ratio and the majority–minority distributions vary from label to label. Consequently, the majority–minority class overlaps also vary across the labels. Working on this aspect, we propose a framework where a single natural neighbor search is sufficient to identify all the label-specific overlaps. Natural neighbor information is also used to find the key lattices of the majority class (which we do not undersample). The performance of the proposed method, NaNUML, indicates its ability to mitigate the class-imbalance issue in multi-label datasets to a considerable extent. We could also establish a statistically superior performance over other competing methods several times. An empirical study involving twelve real-world multi-label datasets, seven competing methods, and four evaluating metrics—shows that the proposed method effectively handles the class-imbalance issue in multi-label datasets. In this work, we have presented a novel label-specific undersampling scheme, NaNUML, for multi-label datasets. NaNUML is based on the parameter-free natural neighbor search and the key factor, neighborhood size ‘k’ is determined without invoking any parameter optimization.
期刊介绍:
The international journal Advances in Data Analysis and Classification (ADAC) is designed as a forum for high standard publications on research and applications concerning the extraction of knowable aspects from many types of data. It publishes articles on such topics as structural, quantitative, or statistical approaches for the analysis of data; advances in classification, clustering, and pattern recognition methods; strategies for modeling complex data and mining large data sets; methods for the extraction of knowledge from data, and applications of advanced methods in specific domains of practice. Articles illustrate how new domain-specific knowledge can be made available from data by skillful use of data analysis methods. The journal also publishes survey papers that outline, and illuminate the basic ideas and techniques of special approaches.