Cenker Biçer, H. Bakouch, Hayrinisa Demirci Biçer, Gadir Alomair, Tassaddaq Hussain, Amal Almohisen
{"title":"单元 麦克斯韦-玻尔兹曼分布及其在污染物浓度数据中的应用","authors":"Cenker Biçer, H. Bakouch, Hayrinisa Demirci Biçer, Gadir Alomair, Tassaddaq Hussain, Amal Almohisen","doi":"10.3390/axioms13040226","DOIUrl":null,"url":null,"abstract":"In the vast statistical literature, there are numerous probability distribution models that can model data from real-world phenomena. New probability models, nevertheless, are still required in order to represent data with various spread behaviors. It is a known fact that there is a great need for new models with limited support. In this study, a flexible probability model called the unit Maxwell-Boltzmann distribution, which can model data values in the unit interval, is derived by selecting the Maxwell-Boltzmann distribution as a base-line model. The important characteristics of the derived distribution in terms of statistics and mathematics are investigated in detail in this study. Furthermore, the inference problem for the mentioned distribution is addressed from the perspectives of maximum likelihood, method of moments, least squares, and maximum product space, and different estimators are obtained for the unknown parameter of the distribution. The derived distribution outperforms competitive models according to different fit tests and information criteria in the applications performed on four actual air pollutant concentration data sets, indicating that it is an effective model for modeling air pollutant concentration data.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unit Maxwell-Boltzmann Distribution and Its Application to Concentrations Pollutant Data\",\"authors\":\"Cenker Biçer, H. Bakouch, Hayrinisa Demirci Biçer, Gadir Alomair, Tassaddaq Hussain, Amal Almohisen\",\"doi\":\"10.3390/axioms13040226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the vast statistical literature, there are numerous probability distribution models that can model data from real-world phenomena. New probability models, nevertheless, are still required in order to represent data with various spread behaviors. It is a known fact that there is a great need for new models with limited support. In this study, a flexible probability model called the unit Maxwell-Boltzmann distribution, which can model data values in the unit interval, is derived by selecting the Maxwell-Boltzmann distribution as a base-line model. The important characteristics of the derived distribution in terms of statistics and mathematics are investigated in detail in this study. Furthermore, the inference problem for the mentioned distribution is addressed from the perspectives of maximum likelihood, method of moments, least squares, and maximum product space, and different estimators are obtained for the unknown parameter of the distribution. The derived distribution outperforms competitive models according to different fit tests and information criteria in the applications performed on four actual air pollutant concentration data sets, indicating that it is an effective model for modeling air pollutant concentration data.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/axioms13040226\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/axioms13040226","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Unit Maxwell-Boltzmann Distribution and Its Application to Concentrations Pollutant Data
In the vast statistical literature, there are numerous probability distribution models that can model data from real-world phenomena. New probability models, nevertheless, are still required in order to represent data with various spread behaviors. It is a known fact that there is a great need for new models with limited support. In this study, a flexible probability model called the unit Maxwell-Boltzmann distribution, which can model data values in the unit interval, is derived by selecting the Maxwell-Boltzmann distribution as a base-line model. The important characteristics of the derived distribution in terms of statistics and mathematics are investigated in detail in this study. Furthermore, the inference problem for the mentioned distribution is addressed from the perspectives of maximum likelihood, method of moments, least squares, and maximum product space, and different estimators are obtained for the unknown parameter of the distribution. The derived distribution outperforms competitive models according to different fit tests and information criteria in the applications performed on four actual air pollutant concentration data sets, indicating that it is an effective model for modeling air pollutant concentration data.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.