M. A. Abdullah, Nur Aisyah Shafie, M. N. A. Seman, S. B. Abdullah
{"title":"海水淡化用正向渗透膜的性能评估","authors":"M. A. Abdullah, Nur Aisyah Shafie, M. N. A. Seman, S. B. Abdullah","doi":"10.12982/cmjs.2024.026","DOIUrl":null,"url":null,"abstract":"Forward osmosis (FO) has become a technology with great potential for numerous applications, including water desalination. One of the critical factors in determining the FO performance is the selection of the appropriate membrane material that compatible with draw solution. In this study, commercial cellulose triacetate (CTA) and aquaporin-based membranes, as well as a fabricated PES/PVP membrane, were used, with 1-Butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) as the thermo-responsive ionic liquid (TRIL) draw solution. The bench scale of FO system was setup upon co-currently flow rate of 60.0 mL/ min at room temperature. The 7 % PVP with 15 % PES had the best performance, with the highest water flux (Jw) (4.93 LMH), lowest reverse solute diffusion (RSD) (0.43 gMH). The fabricated membrane demonstrated a significantly higher performance compared to the commercial aquaporin-based FO membrane, with an improvement of approximately 60%.","PeriodicalId":9884,"journal":{"name":"Chiang Mai Journal of Science","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Evaluation of Forward Osmosis Membranes for Desalination Applications\",\"authors\":\"M. A. Abdullah, Nur Aisyah Shafie, M. N. A. Seman, S. B. Abdullah\",\"doi\":\"10.12982/cmjs.2024.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forward osmosis (FO) has become a technology with great potential for numerous applications, including water desalination. One of the critical factors in determining the FO performance is the selection of the appropriate membrane material that compatible with draw solution. In this study, commercial cellulose triacetate (CTA) and aquaporin-based membranes, as well as a fabricated PES/PVP membrane, were used, with 1-Butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) as the thermo-responsive ionic liquid (TRIL) draw solution. The bench scale of FO system was setup upon co-currently flow rate of 60.0 mL/ min at room temperature. The 7 % PVP with 15 % PES had the best performance, with the highest water flux (Jw) (4.93 LMH), lowest reverse solute diffusion (RSD) (0.43 gMH). The fabricated membrane demonstrated a significantly higher performance compared to the commercial aquaporin-based FO membrane, with an improvement of approximately 60%.\",\"PeriodicalId\":9884,\"journal\":{\"name\":\"Chiang Mai Journal of Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chiang Mai Journal of Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.12982/cmjs.2024.026\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chiang Mai Journal of Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.12982/cmjs.2024.026","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Performance Evaluation of Forward Osmosis Membranes for Desalination Applications
Forward osmosis (FO) has become a technology with great potential for numerous applications, including water desalination. One of the critical factors in determining the FO performance is the selection of the appropriate membrane material that compatible with draw solution. In this study, commercial cellulose triacetate (CTA) and aquaporin-based membranes, as well as a fabricated PES/PVP membrane, were used, with 1-Butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) as the thermo-responsive ionic liquid (TRIL) draw solution. The bench scale of FO system was setup upon co-currently flow rate of 60.0 mL/ min at room temperature. The 7 % PVP with 15 % PES had the best performance, with the highest water flux (Jw) (4.93 LMH), lowest reverse solute diffusion (RSD) (0.43 gMH). The fabricated membrane demonstrated a significantly higher performance compared to the commercial aquaporin-based FO membrane, with an improvement of approximately 60%.
期刊介绍:
The Chiang Mai Journal of Science is an international English language peer-reviewed journal which is published in open access electronic format 6 times a year in January, March, May, July, September and November by the Faculty of Science, Chiang Mai University. Manuscripts in most areas of science are welcomed except in areas such as agriculture, engineering and medical science which are outside the scope of the Journal. Currently, we focus on manuscripts in biology, chemistry, physics, materials science and environmental science. Papers in mathematics statistics and computer science are also included but should be of an applied nature rather than purely theoretical. Manuscripts describing experiments on humans or animals are required to provide proof that all experiments have been carried out according to the ethical regulations of the respective institutional and/or governmental authorities and this should be clearly stated in the manuscript itself. The Editor reserves the right to reject manuscripts that fail to do so.