预测使用 CFRP 加固的钢筋混凝土圆柱体轴向抗压能力的新模型

IF 1.1 Q3 ENGINEERING, CIVIL Archives of Civil Engineering Pub Date : 2024-03-29 DOI:10.24425/ace.2024.148918
Guang Guo, Li Zhou, Bangkang Wang
{"title":"预测使用 CFRP 加固的钢筋混凝土圆柱体轴向抗压能力的新模型","authors":"Guang Guo, Li Zhou, Bangkang Wang","doi":"10.24425/ace.2024.148918","DOIUrl":null,"url":null,"abstract":"Numerous scholars have identified the shortcomings of imprecise terminology and substantial computational inaccuracies in the current models for predicting the axial compression capacity of CFRPstrengthened reinforced concrete (RC) cylinders. To improve the prediction accuracy of the axial compressive capacity model for CFRP-strengthened RC cylinders, the present axial compressive capacity model for CFRP-strengthened RC cylinders was scrutinized and evaluated. Drawing on Mander’s constraint theory and the concrete triaxial strength model, a novel axial compressive capacity model for CFRP-strengthened RC cylinders was proposed. This study collected 116 experimental data on the axial compression of CFRP-strengthened RC cylinders and analyzed the accuracy of various models using the data. The findings indicate that the model proposed in this study outperforms other models in predicting axial compression capacity and demonstrates high prediction accuracy. Furthermore, an analysis is conducted on the variation law of the model’s predicted value with respect to the design parameters. The proposed model in this study identifies concrete strength, stirrup spacing, and elastic modulus of CFRP as the primary factors that influence the axial compression capacity of CFRP-strengthened RC cylinders.","PeriodicalId":45753,"journal":{"name":"Archives of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new model for predicting the axial compression capacity of reinforced concrete cylinders strengthened with CFRP\",\"authors\":\"Guang Guo, Li Zhou, Bangkang Wang\",\"doi\":\"10.24425/ace.2024.148918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerous scholars have identified the shortcomings of imprecise terminology and substantial computational inaccuracies in the current models for predicting the axial compression capacity of CFRPstrengthened reinforced concrete (RC) cylinders. To improve the prediction accuracy of the axial compressive capacity model for CFRP-strengthened RC cylinders, the present axial compressive capacity model for CFRP-strengthened RC cylinders was scrutinized and evaluated. Drawing on Mander’s constraint theory and the concrete triaxial strength model, a novel axial compressive capacity model for CFRP-strengthened RC cylinders was proposed. This study collected 116 experimental data on the axial compression of CFRP-strengthened RC cylinders and analyzed the accuracy of various models using the data. The findings indicate that the model proposed in this study outperforms other models in predicting axial compression capacity and demonstrates high prediction accuracy. Furthermore, an analysis is conducted on the variation law of the model’s predicted value with respect to the design parameters. The proposed model in this study identifies concrete strength, stirrup spacing, and elastic modulus of CFRP as the primary factors that influence the axial compression capacity of CFRP-strengthened RC cylinders.\",\"PeriodicalId\":45753,\"journal\":{\"name\":\"Archives of Civil Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/ace.2024.148918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ace.2024.148918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

许多学者指出,目前用于预测 CFRP 加固钢筋混凝土(RC)圆柱体轴向抗压能力的模型存在术语不精确和计算严重不准确的缺点。为了提高 CFRP 加固钢筋混凝土圆柱体轴向抗压能力模型的预测精度,对现有的 CFRP 加固钢筋混凝土圆柱体轴向抗压能力模型进行了仔细研究和评估。借鉴曼德尔约束理论和混凝土三轴强度模型,提出了 CFRP 加固 RC 缸的新型轴向抗压能力模型。该研究收集了 116 个 CFRP 加固 RC 缸轴向压缩实验数据,并利用这些数据分析了各种模型的准确性。研究结果表明,本研究提出的模型在预测轴向压缩能力方面优于其他模型,并表现出较高的预测精度。此外,还分析了模型预测值与设计参数的变化规律。本研究提出的模型确定了混凝土强度、箍筋间距和 CFRP 弹性模量是影响 CFRP 加固 RC 缸轴向压缩能力的主要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new model for predicting the axial compression capacity of reinforced concrete cylinders strengthened with CFRP
Numerous scholars have identified the shortcomings of imprecise terminology and substantial computational inaccuracies in the current models for predicting the axial compression capacity of CFRPstrengthened reinforced concrete (RC) cylinders. To improve the prediction accuracy of the axial compressive capacity model for CFRP-strengthened RC cylinders, the present axial compressive capacity model for CFRP-strengthened RC cylinders was scrutinized and evaluated. Drawing on Mander’s constraint theory and the concrete triaxial strength model, a novel axial compressive capacity model for CFRP-strengthened RC cylinders was proposed. This study collected 116 experimental data on the axial compression of CFRP-strengthened RC cylinders and analyzed the accuracy of various models using the data. The findings indicate that the model proposed in this study outperforms other models in predicting axial compression capacity and demonstrates high prediction accuracy. Furthermore, an analysis is conducted on the variation law of the model’s predicted value with respect to the design parameters. The proposed model in this study identifies concrete strength, stirrup spacing, and elastic modulus of CFRP as the primary factors that influence the axial compression capacity of CFRP-strengthened RC cylinders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Civil Engineering
Archives of Civil Engineering ENGINEERING, CIVIL-
CiteScore
1.50
自引率
28.60%
发文量
0
审稿时长
24 weeks
期刊介绍: ARCHIVES OF CIVIL ENGINEERING publish original papers of the theoretical, experimental, numerical and practical nature in the fields of structural mechanics, soil mechanics and foundations engineering, concrete, metal, timber and composite polymer structures, hydrotechnical structures, roads, railways and bridges, building services, building physics, management in construction, production of construction materials, construction of civil engineering structures, education of civil engineers.
期刊最新文献
Determining the trend of geometrical changes of a hydrotechnical object based on data in the form of LiDAR point clouds A study on time schedules for construction projects in Hanoi, Vietnam Study on failure modes and calculation method of the cast steel joint with branches in treelike structure Prediction of CPTu static sounding parameters based on DPH dynamic probing heavy test on the example of “the Praski terrace” sands inWarsaw title Application of the interval approach to determine the exploitation time of pipelines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1