{"title":"在软弱基土上行驶的重型机械的稳定性分析。3D FEM 模型与分析模型","authors":"Aleksander Urbański, M. Richter","doi":"10.24425/ace.2024.148934","DOIUrl":null,"url":null,"abstract":"In this paper, the authors present an extension of the scope of the previously conducted research to the full three-dimensional computer simulation (using the finite element method), which takes into account the interaction between: heavy caterpillar tracks system – working platform – weak subsoil. The article presents a computer model considering two caterpillars, resting on elastic-plastic sub-soil, with standard Mohr-Coulomb yield conditions, allowing for computer simulation of the behavior of the system up to achievement of ultimate limit state. The results of the above model are treated as the reference for a simplified Analytical Models of estimating the limit state, which might be used in design procedures. In turn, these Analytical Models are enhancements of previously presented one. The most important results concluding form the Analytical Model are simple interaction formulas, in the space of moments acting on the machine-subsoil system, limiting a domain of safety in given soil conditions.","PeriodicalId":45753,"journal":{"name":"Archives of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability analysis of heavy machinery moving on weak subsoil. 3D FEM model vs. analytical models\",\"authors\":\"Aleksander Urbański, M. Richter\",\"doi\":\"10.24425/ace.2024.148934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the authors present an extension of the scope of the previously conducted research to the full three-dimensional computer simulation (using the finite element method), which takes into account the interaction between: heavy caterpillar tracks system – working platform – weak subsoil. The article presents a computer model considering two caterpillars, resting on elastic-plastic sub-soil, with standard Mohr-Coulomb yield conditions, allowing for computer simulation of the behavior of the system up to achievement of ultimate limit state. The results of the above model are treated as the reference for a simplified Analytical Models of estimating the limit state, which might be used in design procedures. In turn, these Analytical Models are enhancements of previously presented one. The most important results concluding form the Analytical Model are simple interaction formulas, in the space of moments acting on the machine-subsoil system, limiting a domain of safety in given soil conditions.\",\"PeriodicalId\":45753,\"journal\":{\"name\":\"Archives of Civil Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/ace.2024.148934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ace.2024.148934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Stability analysis of heavy machinery moving on weak subsoil. 3D FEM model vs. analytical models
In this paper, the authors present an extension of the scope of the previously conducted research to the full three-dimensional computer simulation (using the finite element method), which takes into account the interaction between: heavy caterpillar tracks system – working platform – weak subsoil. The article presents a computer model considering two caterpillars, resting on elastic-plastic sub-soil, with standard Mohr-Coulomb yield conditions, allowing for computer simulation of the behavior of the system up to achievement of ultimate limit state. The results of the above model are treated as the reference for a simplified Analytical Models of estimating the limit state, which might be used in design procedures. In turn, these Analytical Models are enhancements of previously presented one. The most important results concluding form the Analytical Model are simple interaction formulas, in the space of moments acting on the machine-subsoil system, limiting a domain of safety in given soil conditions.
期刊介绍:
ARCHIVES OF CIVIL ENGINEERING publish original papers of the theoretical, experimental, numerical and practical nature in the fields of structural mechanics, soil mechanics and foundations engineering, concrete, metal, timber and composite polymer structures, hydrotechnical structures, roads, railways and bridges, building services, building physics, management in construction, production of construction materials, construction of civil engineering structures, education of civil engineers.