基于人工智能的电子线路板平面正交机械特性识别方法

Mohammad A. Gharaibeh
{"title":"基于人工智能的电子线路板平面正交机械特性识别方法","authors":"Mohammad A. Gharaibeh","doi":"10.1177/03093247241240832","DOIUrl":null,"url":null,"abstract":"The finite element modeling of electronic boards is a challenging task due to the complexity of the multi-component board structure. Hence, it is acceptable to attain equivalent orthotropic in-plane mechanical properties and use them throughout the finite element analysis (FEA) simulations. This paper aims to present an artificial intelligence-based methodology, using the artificial neural networks (ANNs), to estimate the in-plane mechanical properties of the printed circuit boards (PCB). In this methodology, the ANN technique used FEA data to find the relationship between the first 10 natural frequencies and the mechanical properties, that is, modulus of elasticity, Poisson’s ratio and the shear modulus, of the test board. Subsequently, the experimentally derived natural frequency data is then imported to the ANN model to identify the equivalent orthotropic properties. The ANN-predicted properties are plugged back into FEA and provided natural frequencies and mode shapes that are in great match with experimental results.","PeriodicalId":517390,"journal":{"name":"The Journal of Strain Analysis for Engineering Design","volume":"14 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An artificial intelligence-based approach for identifying the in-plane orthotropic mechanical properties of electronic circuit boards\",\"authors\":\"Mohammad A. Gharaibeh\",\"doi\":\"10.1177/03093247241240832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The finite element modeling of electronic boards is a challenging task due to the complexity of the multi-component board structure. Hence, it is acceptable to attain equivalent orthotropic in-plane mechanical properties and use them throughout the finite element analysis (FEA) simulations. This paper aims to present an artificial intelligence-based methodology, using the artificial neural networks (ANNs), to estimate the in-plane mechanical properties of the printed circuit boards (PCB). In this methodology, the ANN technique used FEA data to find the relationship between the first 10 natural frequencies and the mechanical properties, that is, modulus of elasticity, Poisson’s ratio and the shear modulus, of the test board. Subsequently, the experimentally derived natural frequency data is then imported to the ANN model to identify the equivalent orthotropic properties. The ANN-predicted properties are plugged back into FEA and provided natural frequencies and mode shapes that are in great match with experimental results.\",\"PeriodicalId\":517390,\"journal\":{\"name\":\"The Journal of Strain Analysis for Engineering Design\",\"volume\":\"14 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Strain Analysis for Engineering Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/03093247241240832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Strain Analysis for Engineering Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/03093247241240832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于多组件电路板结构的复杂性,电子电路板的有限元建模是一项具有挑战性的任务。因此,在整个有限元分析(FEA)模拟过程中,获得等效的正交平面力学性能并加以使用是可以接受的。本文旨在介绍一种基于人工智能的方法,利用人工神经网络(ANN)估算印刷电路板(PCB)的面内机械特性。在该方法中,ANN 技术利用有限元分析数据找出前 10 个自然频率与测试板的机械性能(即弹性模量、泊松比和剪切模量)之间的关系。随后,将实验得出的固有频率数据导入 ANN 模型,以确定等效的正交特性。将 ANN 预测的属性输入到有限元分析中,得到的固有频率和模态振型与实验结果非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An artificial intelligence-based approach for identifying the in-plane orthotropic mechanical properties of electronic circuit boards
The finite element modeling of electronic boards is a challenging task due to the complexity of the multi-component board structure. Hence, it is acceptable to attain equivalent orthotropic in-plane mechanical properties and use them throughout the finite element analysis (FEA) simulations. This paper aims to present an artificial intelligence-based methodology, using the artificial neural networks (ANNs), to estimate the in-plane mechanical properties of the printed circuit boards (PCB). In this methodology, the ANN technique used FEA data to find the relationship between the first 10 natural frequencies and the mechanical properties, that is, modulus of elasticity, Poisson’s ratio and the shear modulus, of the test board. Subsequently, the experimentally derived natural frequency data is then imported to the ANN model to identify the equivalent orthotropic properties. The ANN-predicted properties are plugged back into FEA and provided natural frequencies and mode shapes that are in great match with experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phase field thermal shock analysis of rotating porous cracked pretwisted FGM microblade using exact shear correction factor Predictive modeling of spring-back in pre-punched sheet roll forming using machine learning Eliminating eccentricity error in measuring residual stresses via hole-drilling method using strain gauge rosette with five measuring grids: For thin plates using through-holes Creep damage assessment of HR3C austenitic steel by using misorientation parameters derived from EBSD technique 3D dynamic contact analysis of tyre internal deformation using 2D image sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1