{"title":"论使用反幂法提高分层双重抽样中校准估计器的效率","authors":"E. P. Clement, E. I. Enang","doi":"10.3329/ijss.v24i1.72025","DOIUrl":null,"url":null,"abstract":"This study introduces the concept of inverse exponentiation in formulating calibration weights in stratified double sampling and proposes a more improved calibration estimator based on Koyuncu and Kadilar (2014) calibration estimator. The variance of the proposed logarithmic calibration estimator has been derived under large sample approximation. Calibration asymptotic optimum estimator and its approximate variance estimator are derived for the proposed logarithmic calibration estimator. Results of empirical study showed that the proposed logarithmic calibration estimator performs better than the Koyuncu and Kadilar (2014) calibration estimator with appreciable gains in efficiency. Also, simulation study for the comparison of the proposed logarithmic estimator with a Global estimator [Generalized Regression (GREG) estimator ] proved the robustness of the proposed logarithmic calibration estimator and by extension the efficacy of inverse exponentiation in calibration weightings. Analysis and evaluation are presented.\nInternational Journal of Statistical Sciences, Vol.24(1), March, 2024, pp 91-102","PeriodicalId":512956,"journal":{"name":"International Journal of Statistical Sciences","volume":"8 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Use of Inverse Exponentiation to Improve the Efficiency of Calibration Estimators in Stratified Double Sampling\",\"authors\":\"E. P. Clement, E. I. Enang\",\"doi\":\"10.3329/ijss.v24i1.72025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study introduces the concept of inverse exponentiation in formulating calibration weights in stratified double sampling and proposes a more improved calibration estimator based on Koyuncu and Kadilar (2014) calibration estimator. The variance of the proposed logarithmic calibration estimator has been derived under large sample approximation. Calibration asymptotic optimum estimator and its approximate variance estimator are derived for the proposed logarithmic calibration estimator. Results of empirical study showed that the proposed logarithmic calibration estimator performs better than the Koyuncu and Kadilar (2014) calibration estimator with appreciable gains in efficiency. Also, simulation study for the comparison of the proposed logarithmic estimator with a Global estimator [Generalized Regression (GREG) estimator ] proved the robustness of the proposed logarithmic calibration estimator and by extension the efficacy of inverse exponentiation in calibration weightings. Analysis and evaluation are presented.\\nInternational Journal of Statistical Sciences, Vol.24(1), March, 2024, pp 91-102\",\"PeriodicalId\":512956,\"journal\":{\"name\":\"International Journal of Statistical Sciences\",\"volume\":\"8 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Statistical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/ijss.v24i1.72025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Statistical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/ijss.v24i1.72025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Use of Inverse Exponentiation to Improve the Efficiency of Calibration Estimators in Stratified Double Sampling
This study introduces the concept of inverse exponentiation in formulating calibration weights in stratified double sampling and proposes a more improved calibration estimator based on Koyuncu and Kadilar (2014) calibration estimator. The variance of the proposed logarithmic calibration estimator has been derived under large sample approximation. Calibration asymptotic optimum estimator and its approximate variance estimator are derived for the proposed logarithmic calibration estimator. Results of empirical study showed that the proposed logarithmic calibration estimator performs better than the Koyuncu and Kadilar (2014) calibration estimator with appreciable gains in efficiency. Also, simulation study for the comparison of the proposed logarithmic estimator with a Global estimator [Generalized Regression (GREG) estimator ] proved the robustness of the proposed logarithmic calibration estimator and by extension the efficacy of inverse exponentiation in calibration weightings. Analysis and evaluation are presented.
International Journal of Statistical Sciences, Vol.24(1), March, 2024, pp 91-102