论使用反幂法提高分层双重抽样中校准估计器的效率

E. P. Clement, E. I. Enang
{"title":"论使用反幂法提高分层双重抽样中校准估计器的效率","authors":"E. P. Clement, E. I. Enang","doi":"10.3329/ijss.v24i1.72025","DOIUrl":null,"url":null,"abstract":"This study introduces the concept of inverse exponentiation in formulating calibration weights in stratified double sampling and proposes a more improved calibration estimator based on Koyuncu and Kadilar (2014) calibration estimator. The variance of the proposed logarithmic calibration estimator has been derived under large sample approximation. Calibration asymptotic optimum estimator  and its approximate variance estimator are derived for the proposed logarithmic calibration estimator. Results of empirical study showed that the proposed logarithmic calibration estimator  performs better than the Koyuncu and Kadilar (2014) calibration estimator  with appreciable gains in efficiency. Also, simulation study for the comparison of the proposed logarithmic estimator with a Global estimator [Generalized Regression (GREG) estimator ] proved the robustness of the proposed logarithmic calibration estimator and by extension the efficacy of inverse exponentiation in calibration weightings.  Analysis and evaluation are presented.\nInternational Journal of Statistical Sciences, Vol.24(1), March, 2024, pp 91-102","PeriodicalId":512956,"journal":{"name":"International Journal of Statistical Sciences","volume":"8 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Use of Inverse Exponentiation to Improve the Efficiency of Calibration Estimators in Stratified Double Sampling\",\"authors\":\"E. P. Clement, E. I. Enang\",\"doi\":\"10.3329/ijss.v24i1.72025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study introduces the concept of inverse exponentiation in formulating calibration weights in stratified double sampling and proposes a more improved calibration estimator based on Koyuncu and Kadilar (2014) calibration estimator. The variance of the proposed logarithmic calibration estimator has been derived under large sample approximation. Calibration asymptotic optimum estimator  and its approximate variance estimator are derived for the proposed logarithmic calibration estimator. Results of empirical study showed that the proposed logarithmic calibration estimator  performs better than the Koyuncu and Kadilar (2014) calibration estimator  with appreciable gains in efficiency. Also, simulation study for the comparison of the proposed logarithmic estimator with a Global estimator [Generalized Regression (GREG) estimator ] proved the robustness of the proposed logarithmic calibration estimator and by extension the efficacy of inverse exponentiation in calibration weightings.  Analysis and evaluation are presented.\\nInternational Journal of Statistical Sciences, Vol.24(1), March, 2024, pp 91-102\",\"PeriodicalId\":512956,\"journal\":{\"name\":\"International Journal of Statistical Sciences\",\"volume\":\"8 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Statistical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/ijss.v24i1.72025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Statistical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/ijss.v24i1.72025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究在制定分层双重抽样中的校准权重时引入了反指数的概念,并在 Koyuncu 和 Kadilar(2014 年)校准估计器的基础上提出了一种更完善的校准估计器。提出的对数校准估计器的方差是在大样本近似条件下得出的。对所提出的对数校准估计器推导出了校准渐近最优估计器及其近似方差估计器。实证研究结果表明,拟议的对数校准估计器比 Koyuncu 和 Kadilar(2014 年)的校准估计器性能更好,效率显著提高。此外,对拟议对数估计器与全局估计器[广义回归(GREG)估计器]进行比较的模拟研究证明了拟议对数校准估计器的稳健性,并进而证明了反指数在校准权重中的功效。 国际统计科学杂志》,第 24(1)卷,2024 年 3 月,第 91-102 页。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the Use of Inverse Exponentiation to Improve the Efficiency of Calibration Estimators in Stratified Double Sampling
This study introduces the concept of inverse exponentiation in formulating calibration weights in stratified double sampling and proposes a more improved calibration estimator based on Koyuncu and Kadilar (2014) calibration estimator. The variance of the proposed logarithmic calibration estimator has been derived under large sample approximation. Calibration asymptotic optimum estimator  and its approximate variance estimator are derived for the proposed logarithmic calibration estimator. Results of empirical study showed that the proposed logarithmic calibration estimator  performs better than the Koyuncu and Kadilar (2014) calibration estimator  with appreciable gains in efficiency. Also, simulation study for the comparison of the proposed logarithmic estimator with a Global estimator [Generalized Regression (GREG) estimator ] proved the robustness of the proposed logarithmic calibration estimator and by extension the efficacy of inverse exponentiation in calibration weightings.  Analysis and evaluation are presented. International Journal of Statistical Sciences, Vol.24(1), March, 2024, pp 91-102
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimum Designs for Optimum Mixtures: An Informative Review Crafting Disaster-Driven Statistics: A Strategic Sampling Model Some Questions Related to Rao-Blackwellization and Association Rule Mining New Series of D-efficient Covariate Designs under BIBD set-up Understanding Chao (Biometrika, 1982) [Paper on ΠPS Sampling Schemes]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1