预应力混凝土桥梁数值模型类型对确定其内力和位移的影响

IF 1.1 Q3 ENGINEERING, CIVIL Archives of Civil Engineering Pub Date : 2024-03-28 DOI:10.24425/ace.2024.148905
Radosław Oleszek, Wojciech Radomski, Krzysztof Nowak
{"title":"预应力混凝土桥梁数值模型类型对确定其内力和位移的影响","authors":"Radosław Oleszek, Wojciech Radomski, Krzysztof Nowak","doi":"10.24425/ace.2024.148905","DOIUrl":null,"url":null,"abstract":"Static analyses of bridge structures are currently performed using the finite element method (FEM). Depending on the geometry of the structure and the technically required accuracy of calculations, different levels of discretization of these structures are used in their design. In the design process, beam grillage models (denoted e1, p2), shell models (denoted e2, p2) or shell-beam models (denoted e1+ e2, p3) are often used. Solid models (denoted e3+ p3) are mostly used in advanced analyses, having frequently a scientific character. It is shown that there is an impact of the applied types of the numerical model (i.e., degree of complexity, degree of discretization, accuracy of the model) of the road bridge on the calculated values of bending moments and displacements, which indirectly affects the global safety coefficient of the designed bridge structure. The main purpose of the calculations is to examine the discrepancies of analyzed internal forces and displacements depending of the type of numerical model used. The calculated values are referred to the results taken from the field tests of the existing bridge denoted MS 03, which is a continuous beam structure with the three spans 37:50 + 46:75 + 37:50 m made of prestressed concrete and with variable beam depth. On the basis of numerical simulations, the paper provides author’s recommendations for computer modeling of similar bridges.","PeriodicalId":45753,"journal":{"name":"Archives of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of the type of numerical model a prestressed concrete bridge on the determination of its internal forces and displacements\",\"authors\":\"Radosław Oleszek, Wojciech Radomski, Krzysztof Nowak\",\"doi\":\"10.24425/ace.2024.148905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Static analyses of bridge structures are currently performed using the finite element method (FEM). Depending on the geometry of the structure and the technically required accuracy of calculations, different levels of discretization of these structures are used in their design. In the design process, beam grillage models (denoted e1, p2), shell models (denoted e2, p2) or shell-beam models (denoted e1+ e2, p3) are often used. Solid models (denoted e3+ p3) are mostly used in advanced analyses, having frequently a scientific character. It is shown that there is an impact of the applied types of the numerical model (i.e., degree of complexity, degree of discretization, accuracy of the model) of the road bridge on the calculated values of bending moments and displacements, which indirectly affects the global safety coefficient of the designed bridge structure. The main purpose of the calculations is to examine the discrepancies of analyzed internal forces and displacements depending of the type of numerical model used. The calculated values are referred to the results taken from the field tests of the existing bridge denoted MS 03, which is a continuous beam structure with the three spans 37:50 + 46:75 + 37:50 m made of prestressed concrete and with variable beam depth. On the basis of numerical simulations, the paper provides author’s recommendations for computer modeling of similar bridges.\",\"PeriodicalId\":45753,\"journal\":{\"name\":\"Archives of Civil Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/ace.2024.148905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ace.2024.148905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

目前,桥梁结构的静态分析是采用有限元法(FEM)进行的。根据结构的几何形状和技术上对计算精度的要求,这些结构在设计时采用了不同的离散程度。在设计过程中,通常使用梁格栅模型(表示为 e1,p2)、壳模型(表示为 e2,p2)或壳-梁模型(表示为 e1+ e2,p3)。实体模型(表示为 e3+ p3)主要用于高级分析,通常具有科学性。结果表明,道路桥梁数值模型的应用类型(即复杂程度、离散程度、模型精度)对弯矩和位移的计算值有影响,从而间接影响到所设计桥梁结构的总体安全系数。计算的主要目的是研究分析内力和位移的差异取决于所使用的数值模型类型。计算值参考了现有桥梁(MS 03)的现场测试结果,该桥为连续梁结构,三跨分别为 37:50 + 46:75 + 37:50米,由预应力混凝土制成,梁深可变。在数值模拟的基础上,本文为类似桥梁的计算机建模提供了作者的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of the type of numerical model a prestressed concrete bridge on the determination of its internal forces and displacements
Static analyses of bridge structures are currently performed using the finite element method (FEM). Depending on the geometry of the structure and the technically required accuracy of calculations, different levels of discretization of these structures are used in their design. In the design process, beam grillage models (denoted e1, p2), shell models (denoted e2, p2) or shell-beam models (denoted e1+ e2, p3) are often used. Solid models (denoted e3+ p3) are mostly used in advanced analyses, having frequently a scientific character. It is shown that there is an impact of the applied types of the numerical model (i.e., degree of complexity, degree of discretization, accuracy of the model) of the road bridge on the calculated values of bending moments and displacements, which indirectly affects the global safety coefficient of the designed bridge structure. The main purpose of the calculations is to examine the discrepancies of analyzed internal forces and displacements depending of the type of numerical model used. The calculated values are referred to the results taken from the field tests of the existing bridge denoted MS 03, which is a continuous beam structure with the three spans 37:50 + 46:75 + 37:50 m made of prestressed concrete and with variable beam depth. On the basis of numerical simulations, the paper provides author’s recommendations for computer modeling of similar bridges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Civil Engineering
Archives of Civil Engineering ENGINEERING, CIVIL-
CiteScore
1.50
自引率
28.60%
发文量
0
审稿时长
24 weeks
期刊介绍: ARCHIVES OF CIVIL ENGINEERING publish original papers of the theoretical, experimental, numerical and practical nature in the fields of structural mechanics, soil mechanics and foundations engineering, concrete, metal, timber and composite polymer structures, hydrotechnical structures, roads, railways and bridges, building services, building physics, management in construction, production of construction materials, construction of civil engineering structures, education of civil engineers.
期刊最新文献
Determining the trend of geometrical changes of a hydrotechnical object based on data in the form of LiDAR point clouds A study on time schedules for construction projects in Hanoi, Vietnam Study on failure modes and calculation method of the cast steel joint with branches in treelike structure Prediction of CPTu static sounding parameters based on DPH dynamic probing heavy test on the example of “the Praski terrace” sands inWarsaw title Application of the interval approach to determine the exploitation time of pipelines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1