用于对单胺氧化酶 A 和单胺氧化酶 B 进行特异性成像的小分子探针

iRadiology Pub Date : 2024-03-27 DOI:10.1002/ird3.70
Yi Fang, Zhengping Chen, Min Yang
{"title":"用于对单胺氧化酶 A 和单胺氧化酶 B 进行特异性成像的小分子探针","authors":"Yi Fang,&nbsp;Zhengping Chen,&nbsp;Min Yang","doi":"10.1002/ird3.70","DOIUrl":null,"url":null,"abstract":"<p>Monoamine oxidases (MAOs) are a class of flavin enzymes that are mainly present in the outer membrane of mitochondria and play a crucial role in maintaining the homeostasis of monoamine neurotransmitters in the central nervous system. Furthermore, expression of MAOs is associated with the functions of peripheral organs. Dysfunction of MAOs is relevant in a variety of diseases such as neurodegenerative diseases, heart failure, metabolic disorders, and cancers. Monoamine oxidases have two isoenzymes, namely, monoamine oxidase A (MAO-A) and monoamine oxidase B (MAO-B). Therefore, the development of reliable and specific methods to detect these two isoenzymes is of great significance for the in-depth understanding of their functions in biological systems, and for further promoting the clinical diagnosis and treatment of MAO-related diseases. This review mainly focuses on the advances in small molecular probes for the specific imaging of MAO-A and MAO-B, including radiolabeled probes, fluorescent probes, and a <sup>19</sup>F magnetic resonance imaging probe. In addition, applications of these probes for detecting MAO expression levels in cells, tissues, animal models, and patients are described. Finally, the challenges and perspectives of developing novel MAO imaging probes are also highlighted.</p>","PeriodicalId":73508,"journal":{"name":"iRadiology","volume":"2 2","pages":"191-215"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ird3.70","citationCount":"0","resultStr":"{\"title\":\"Small molecule probes for the specific imaging of monoamine oxidase A and monoamine oxidase B\",\"authors\":\"Yi Fang,&nbsp;Zhengping Chen,&nbsp;Min Yang\",\"doi\":\"10.1002/ird3.70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Monoamine oxidases (MAOs) are a class of flavin enzymes that are mainly present in the outer membrane of mitochondria and play a crucial role in maintaining the homeostasis of monoamine neurotransmitters in the central nervous system. Furthermore, expression of MAOs is associated with the functions of peripheral organs. Dysfunction of MAOs is relevant in a variety of diseases such as neurodegenerative diseases, heart failure, metabolic disorders, and cancers. Monoamine oxidases have two isoenzymes, namely, monoamine oxidase A (MAO-A) and monoamine oxidase B (MAO-B). Therefore, the development of reliable and specific methods to detect these two isoenzymes is of great significance for the in-depth understanding of their functions in biological systems, and for further promoting the clinical diagnosis and treatment of MAO-related diseases. This review mainly focuses on the advances in small molecular probes for the specific imaging of MAO-A and MAO-B, including radiolabeled probes, fluorescent probes, and a <sup>19</sup>F magnetic resonance imaging probe. In addition, applications of these probes for detecting MAO expression levels in cells, tissues, animal models, and patients are described. Finally, the challenges and perspectives of developing novel MAO imaging probes are also highlighted.</p>\",\"PeriodicalId\":73508,\"journal\":{\"name\":\"iRadiology\",\"volume\":\"2 2\",\"pages\":\"191-215\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ird3.70\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iRadiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ird3.70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iRadiology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ird3.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

单胺氧化酶(MAOs)是一类主要存在于线粒体外膜的黄素酶,在维持中枢神经系统中单胺神经递质的平衡方面发挥着至关重要的作用。此外,MAOs 的表达还与外周器官的功能有关。MAOs 的功能障碍与多种疾病有关,如神经退行性疾病、心力衰竭、代谢紊乱和癌症。单胺氧化酶有两种同工酶,即单胺氧化酶 A(MAO-A)和单胺氧化酶 B(MAO-B)。因此,开发可靠、特异的方法检测这两种同工酶,对于深入了解它们在生物系统中的功能,进一步促进 MAO 相关疾病的临床诊断和治疗具有重要意义。本综述主要关注用于 MAO-A 和 MAO-B 特异性成像的小分子探针的研究进展,包括放射性标记探针、荧光探针和 19F 磁共振成像探针。此外,还介绍了这些探针在检测细胞、组织、动物模型和患者体内 MAO 表达水平方面的应用。最后,还强调了开发新型 MAO 成像探针所面临的挑战和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Small molecule probes for the specific imaging of monoamine oxidase A and monoamine oxidase B

Monoamine oxidases (MAOs) are a class of flavin enzymes that are mainly present in the outer membrane of mitochondria and play a crucial role in maintaining the homeostasis of monoamine neurotransmitters in the central nervous system. Furthermore, expression of MAOs is associated with the functions of peripheral organs. Dysfunction of MAOs is relevant in a variety of diseases such as neurodegenerative diseases, heart failure, metabolic disorders, and cancers. Monoamine oxidases have two isoenzymes, namely, monoamine oxidase A (MAO-A) and monoamine oxidase B (MAO-B). Therefore, the development of reliable and specific methods to detect these two isoenzymes is of great significance for the in-depth understanding of their functions in biological systems, and for further promoting the clinical diagnosis and treatment of MAO-related diseases. This review mainly focuses on the advances in small molecular probes for the specific imaging of MAO-A and MAO-B, including radiolabeled probes, fluorescent probes, and a 19F magnetic resonance imaging probe. In addition, applications of these probes for detecting MAO expression levels in cells, tissues, animal models, and patients are described. Finally, the challenges and perspectives of developing novel MAO imaging probes are also highlighted.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information An unusual large mass of sclerosing angiomatoid nodular transformation Exploring the feasibility of integrating ultra-high field magnetic resonance imaging neuroimaging with multimodal artificial intelligence for clinical diagnostics Three-dimensional time of flight magnetic resonance angiography at 5.0T: Visualization of the superior cerebellar artery Ultra-high field magnetic resonance imaging in theranostics of mental disorders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1