Ay Lie Han, Bobby Rio Indriyantho, Mhd Rony Asshidiqie, Purwanto, Widowati, Kartono, I Nyoman Jujur
{"title":"麦田圈陶瓷砖的断裂行为:实验和数值研究","authors":"Ay Lie Han, Bobby Rio Indriyantho, Mhd Rony Asshidiqie, Purwanto, Widowati, Kartono, I Nyoman Jujur","doi":"10.46604/ijeti.2024.13070","DOIUrl":null,"url":null,"abstract":"This research investigates the effect of three-dimensional (3D) bee-crop-circle tiles on load deformation, initial cracking and propagation, and stress redistribution. Experimental tests provide limited data due to the small specimen size and brittle nature of the material. A finite element (FE) model is constructed and validated by laboratory data to analyze the stress-strain responses and failure mode. The model enables a detailed description of stress patterns, stress propagation, and redistribution of layers beneath the bee design. The study concludes that a 3D crop circle-inspired design significantly influences the ultimate load-carrying capacity and stress-related behavior. The load-deformation response is nonlinear, and the coloring influences the thickness of coatings, further affecting the ultimate load and initial stiffness. Furthermore, designs with convex details result in an arc action, deviating the stress concentrations away from the line of loading. The FE model slightly overestimates the initial stiffness but represents the ultimate load and load-displacement response with high accuracy.","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fracture Behavior of Crop Circle Ceramic Tiles: Experimental and Numerical Study\",\"authors\":\"Ay Lie Han, Bobby Rio Indriyantho, Mhd Rony Asshidiqie, Purwanto, Widowati, Kartono, I Nyoman Jujur\",\"doi\":\"10.46604/ijeti.2024.13070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research investigates the effect of three-dimensional (3D) bee-crop-circle tiles on load deformation, initial cracking and propagation, and stress redistribution. Experimental tests provide limited data due to the small specimen size and brittle nature of the material. A finite element (FE) model is constructed and validated by laboratory data to analyze the stress-strain responses and failure mode. The model enables a detailed description of stress patterns, stress propagation, and redistribution of layers beneath the bee design. The study concludes that a 3D crop circle-inspired design significantly influences the ultimate load-carrying capacity and stress-related behavior. The load-deformation response is nonlinear, and the coloring influences the thickness of coatings, further affecting the ultimate load and initial stiffness. Furthermore, designs with convex details result in an arc action, deviating the stress concentrations away from the line of loading. The FE model slightly overestimates the initial stiffness but represents the ultimate load and load-displacement response with high accuracy.\",\"PeriodicalId\":43808,\"journal\":{\"name\":\"International Journal of Engineering and Technology Innovation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering and Technology Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46604/ijeti.2024.13070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/ijeti.2024.13070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Fracture Behavior of Crop Circle Ceramic Tiles: Experimental and Numerical Study
This research investigates the effect of three-dimensional (3D) bee-crop-circle tiles on load deformation, initial cracking and propagation, and stress redistribution. Experimental tests provide limited data due to the small specimen size and brittle nature of the material. A finite element (FE) model is constructed and validated by laboratory data to analyze the stress-strain responses and failure mode. The model enables a detailed description of stress patterns, stress propagation, and redistribution of layers beneath the bee design. The study concludes that a 3D crop circle-inspired design significantly influences the ultimate load-carrying capacity and stress-related behavior. The load-deformation response is nonlinear, and the coloring influences the thickness of coatings, further affecting the ultimate load and initial stiffness. Furthermore, designs with convex details result in an arc action, deviating the stress concentrations away from the line of loading. The FE model slightly overestimates the initial stiffness but represents the ultimate load and load-displacement response with high accuracy.
期刊介绍:
The IJETI journal focus on the field of engineering and technology Innovation. And it publishes original papers including but not limited to the following fields: Automation Engineering Civil Engineering Control Engineering Electric Engineering Electronic Engineering Green Technology Information Engineering Mechanical Engineering Material Engineering Mechatronics and Robotics Engineering Nanotechnology Optic Engineering Sport Science and Technology Innovation Management Other Engineering and Technology Related Topics.