在流行病学模型上应用拉普拉斯变换作为卡普托衍生物

Nikolaos Gkrekas
{"title":"在流行病学模型上应用拉普拉斯变换作为卡普托衍生物","authors":"Nikolaos Gkrekas","doi":"10.17537/2024.19.61","DOIUrl":null,"url":null,"abstract":"\n This paper delves into the application of fractional calculus, with a focus on Caputo derivatives, in epidemiological models using ordinary differential equations. It highlights the critical role Caputo derivatives play in modeling intricate systems with memory effects and assesses various epidemiological models, including SIR variants, demonstrating how Caputo derivatives capture fractional-order dynamics and memory phenomena found in real epidemics. The study showcases the utility of Laplace transformations for analyzing systems described by ordinary differential equations with Caputo derivatives. This approach facilitates both analytical and numerical methods for system analysis and parameter estimation. Additionally, the paper introduces a tabular representation for epidemiological models, enabling a visual and analytical exploration of variable relationships and dynamics. This matrix-based framework permits the application of linear algebra techniques to assess stability and equilibrium points, yielding valuable insights into long-term behavior and control strategies. In summary, this research underscores the significance of Caputo derivatives, Laplace transformations, and matrix representation in epidemiological modeling. We assume that by using this type of methodology we can get analytic solutions by hand when considering a function as constant in certain cases and it will not be necessary to search for numerical methods.\n","PeriodicalId":53525,"journal":{"name":"Mathematical Biology and Bioinformatics","volume":"89 26","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applying Laplace Transformation on Epidemiological Models as Caputo Derivatives\",\"authors\":\"Nikolaos Gkrekas\",\"doi\":\"10.17537/2024.19.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper delves into the application of fractional calculus, with a focus on Caputo derivatives, in epidemiological models using ordinary differential equations. It highlights the critical role Caputo derivatives play in modeling intricate systems with memory effects and assesses various epidemiological models, including SIR variants, demonstrating how Caputo derivatives capture fractional-order dynamics and memory phenomena found in real epidemics. The study showcases the utility of Laplace transformations for analyzing systems described by ordinary differential equations with Caputo derivatives. This approach facilitates both analytical and numerical methods for system analysis and parameter estimation. Additionally, the paper introduces a tabular representation for epidemiological models, enabling a visual and analytical exploration of variable relationships and dynamics. This matrix-based framework permits the application of linear algebra techniques to assess stability and equilibrium points, yielding valuable insights into long-term behavior and control strategies. In summary, this research underscores the significance of Caputo derivatives, Laplace transformations, and matrix representation in epidemiological modeling. We assume that by using this type of methodology we can get analytic solutions by hand when considering a function as constant in certain cases and it will not be necessary to search for numerical methods.\\n\",\"PeriodicalId\":53525,\"journal\":{\"name\":\"Mathematical Biology and Bioinformatics\",\"volume\":\"89 26\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biology and Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17537/2024.19.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biology and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17537/2024.19.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文深入探讨了分数微积分在使用常微分方程的流行病学模型中的应用,重点是卡普托导数。它强调了卡普托导数在模拟具有记忆效应的复杂系统中发挥的关键作用,并评估了各种流行病学模型,包括 SIR 变体,展示了卡普托导数如何捕捉真实流行病中的分数阶动态和记忆现象。这项研究展示了拉普拉斯变换在分析由带有卡普托导数的常微分方程描述的系统时的实用性。这种方法有助于采用分析和数值方法进行系统分析和参数估计。此外,论文还介绍了流行病学模型的表格表示法,从而能够对变量关系和动态进行可视化和分析性探索。这种基于矩阵的框架允许应用线性代数技术来评估稳定性和平衡点,从而为长期行为和控制策略提供有价值的见解。总之,这项研究强调了卡普托导数、拉普拉斯变换和矩阵表示法在流行病学建模中的重要性。我们假定,在某些情况下,将函数视为常数时,通过使用这类方法,我们可以用手得到解析解,而无需寻找数值方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Applying Laplace Transformation on Epidemiological Models as Caputo Derivatives
This paper delves into the application of fractional calculus, with a focus on Caputo derivatives, in epidemiological models using ordinary differential equations. It highlights the critical role Caputo derivatives play in modeling intricate systems with memory effects and assesses various epidemiological models, including SIR variants, demonstrating how Caputo derivatives capture fractional-order dynamics and memory phenomena found in real epidemics. The study showcases the utility of Laplace transformations for analyzing systems described by ordinary differential equations with Caputo derivatives. This approach facilitates both analytical and numerical methods for system analysis and parameter estimation. Additionally, the paper introduces a tabular representation for epidemiological models, enabling a visual and analytical exploration of variable relationships and dynamics. This matrix-based framework permits the application of linear algebra techniques to assess stability and equilibrium points, yielding valuable insights into long-term behavior and control strategies. In summary, this research underscores the significance of Caputo derivatives, Laplace transformations, and matrix representation in epidemiological modeling. We assume that by using this type of methodology we can get analytic solutions by hand when considering a function as constant in certain cases and it will not be necessary to search for numerical methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Biology and Bioinformatics
Mathematical Biology and Bioinformatics Mathematics-Applied Mathematics
CiteScore
1.10
自引率
0.00%
发文量
13
期刊最新文献
Modeling Growth and Photoadaptation of Porphyridium purpureum Batch Culture Mathematical Modeling of the Initial Period of Spread of HIV-1 Infection in the Lymphatic Node Mathematical Model of Closed Microecosystem “Algae – Heterotrophic Bacteria” Using a Drug Repurposing Strategy to Virtually Screen Potential HIV-1 Entry Inhibitors That Block the NHR Domain of the Viral Envelope Protein gp41 Applying Laplace Transformation on Epidemiological Models as Caputo Derivatives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1