通过简化的 ADS-B 感知系统实现安全航空控制

IF 3.8 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Applied System Innovation Pub Date : 2024-03-26 DOI:10.3390/asi7020027
Q. Abu Al-haija, Ahmed Al-Tamimi
{"title":"通过简化的 ADS-B 感知系统实现安全航空控制","authors":"Q. Abu Al-haija, Ahmed Al-Tamimi","doi":"10.3390/asi7020027","DOIUrl":null,"url":null,"abstract":"Automatic dependent surveillance-broadcast (ADS-B) is the future of aviation surveillance and traffic control, allowing different aircraft types to exchange information periodically. Despite this protocol’s advantages, it is vulnerable to flooding, denial of service, and injection attacks. In this paper, we decided to join the initiative of securing this protocol and propose an efficient detection method to help detect any exploitation attempts by injecting these messages with the wrong information. This paper focused mainly on three attacks: path modification, ghost aircraft injection, and velocity drift attacks. This paper aims to provide a revolutionary methodology that, even in the face of new attacks (zero-day attacks), can successfully detect injected messages. The main advantage was utilizing a recent dataset to create more reliable and adaptive training and testing materials, which were then preprocessed before using different machine learning algorithms to feasibly create the most accurate and time-efficient model. The best outcomes of the binary classification were obtained with 99.14% accuracy, an F1-score of 99.14%, and a Matthews correlation coefficient (MCC) of 0.982. At the same time, the best outcomes of the multiclass classification were obtained with 99.41% accuracy, an F1-score of 99.37%, and a Matthews correlation coefficient (MCC) of 0.988. Eventually, our best outcomes outdo existing models, but we believe the model would benefit from more testing of other types of attacks and a bigger dataset.","PeriodicalId":36273,"journal":{"name":"Applied System Innovation","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Secure Aviation Control through a Streamlined ADS-B Perception System\",\"authors\":\"Q. Abu Al-haija, Ahmed Al-Tamimi\",\"doi\":\"10.3390/asi7020027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic dependent surveillance-broadcast (ADS-B) is the future of aviation surveillance and traffic control, allowing different aircraft types to exchange information periodically. Despite this protocol’s advantages, it is vulnerable to flooding, denial of service, and injection attacks. In this paper, we decided to join the initiative of securing this protocol and propose an efficient detection method to help detect any exploitation attempts by injecting these messages with the wrong information. This paper focused mainly on three attacks: path modification, ghost aircraft injection, and velocity drift attacks. This paper aims to provide a revolutionary methodology that, even in the face of new attacks (zero-day attacks), can successfully detect injected messages. The main advantage was utilizing a recent dataset to create more reliable and adaptive training and testing materials, which were then preprocessed before using different machine learning algorithms to feasibly create the most accurate and time-efficient model. The best outcomes of the binary classification were obtained with 99.14% accuracy, an F1-score of 99.14%, and a Matthews correlation coefficient (MCC) of 0.982. At the same time, the best outcomes of the multiclass classification were obtained with 99.41% accuracy, an F1-score of 99.37%, and a Matthews correlation coefficient (MCC) of 0.988. Eventually, our best outcomes outdo existing models, but we believe the model would benefit from more testing of other types of attacks and a bigger dataset.\",\"PeriodicalId\":36273,\"journal\":{\"name\":\"Applied System Innovation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied System Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/asi7020027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied System Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/asi7020027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

自动相关监视广播(ADS-B)是航空监视和交通控制的未来,它允许不同类型的飞机定期交换信息。尽管该协议有很多优点,但它很容易受到泛洪、拒绝服务和注入攻击。在本文中,我们决定加入保障该协议安全的行动,并提出一种有效的检测方法,帮助检测任何通过注入错误信息来利用这些信息的企图。本文主要关注三种攻击:路径修改、幽灵飞机注入和速度漂移攻击。本文旨在提供一种革命性的方法,即使面对新的攻击(零日攻击),也能成功检测到注入的信息。其主要优势在于利用最新的数据集来创建更可靠、适应性更强的训练和测试材料,然后在使用不同的机器学习算法对这些材料进行预处理,从而可行地创建最准确、最省时的模型。二元分类的最佳结果是准确率达到 99.14%,F1 分数达到 99.14%,马修斯相关系数(MCC)达到 0.982。同时,多类分类的准确率为 99.41%,F1 分数为 99.37%,马修斯相关系数(MCC)为 0.988。最终,我们的最佳结果超过了现有的模型,但我们相信,如果能对其他类型的攻击进行更多的测试,并使用更大的数据集,该模型将会受益匪浅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Secure Aviation Control through a Streamlined ADS-B Perception System
Automatic dependent surveillance-broadcast (ADS-B) is the future of aviation surveillance and traffic control, allowing different aircraft types to exchange information periodically. Despite this protocol’s advantages, it is vulnerable to flooding, denial of service, and injection attacks. In this paper, we decided to join the initiative of securing this protocol and propose an efficient detection method to help detect any exploitation attempts by injecting these messages with the wrong information. This paper focused mainly on three attacks: path modification, ghost aircraft injection, and velocity drift attacks. This paper aims to provide a revolutionary methodology that, even in the face of new attacks (zero-day attacks), can successfully detect injected messages. The main advantage was utilizing a recent dataset to create more reliable and adaptive training and testing materials, which were then preprocessed before using different machine learning algorithms to feasibly create the most accurate and time-efficient model. The best outcomes of the binary classification were obtained with 99.14% accuracy, an F1-score of 99.14%, and a Matthews correlation coefficient (MCC) of 0.982. At the same time, the best outcomes of the multiclass classification were obtained with 99.41% accuracy, an F1-score of 99.37%, and a Matthews correlation coefficient (MCC) of 0.988. Eventually, our best outcomes outdo existing models, but we believe the model would benefit from more testing of other types of attacks and a bigger dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied System Innovation
Applied System Innovation Mathematics-Applied Mathematics
CiteScore
7.90
自引率
5.30%
发文量
102
审稿时长
11 weeks
期刊最新文献
Use of Digital Technology in Integrated Mathematics Education Exploring the Intersection of Ergonomics, Design Thinking, and AI/ML in Design Innovation An Image-Retrieval Method Based on Cross-Hardware Platform Features Examining Hybrid Nanofluid Flow Dynamics in the Conical Gap between a Rotating Disk and Cone Surface: An Artificial Neural Network Approach Buzzing through Data: Advancing Bee Species Identification with Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1