微极性流体在垂直中空圆柱上的共轭混合对流

Alliche Sid Ahmed, Bennia Ayoub, Bouaziz Mohamed Najib, Bouaziz Amina Manal
{"title":"微极性流体在垂直中空圆柱上的共轭混合对流","authors":"Alliche Sid Ahmed, Bennia Ayoub, Bouaziz Mohamed Najib, Bouaziz Amina Manal","doi":"10.59441/ijame/181643","DOIUrl":null,"url":null,"abstract":"This work conducts a numerical examination into the influence of a magnetic field and viscosity dissipation on the movement of a micropolar fluid over the surface of a vertical, hollow circular cylinder via conjugate mixed convection. In this investigation, we obtained a numerical solution for a non-linear differential equations-based modeling system by employing MATLAB and the bvp4c solver, which operates on a two-equation model. We show graphically how micropolar materials, conjugate heat transfer, viscous energy dissipation, buoyancy factors and magnetic field affect the temperature at the interface, local skin friction and heat transfer. By contrasting the acquired results with those found in the published research, which exhibit a high degree of concordance, the validity of the methodology is proven.","PeriodicalId":37871,"journal":{"name":"International Journal of Applied Mechanics and Engineering","volume":"78 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conjugate Mixed Convection of a Micropolar Fluid Over a Vertical Hollow Circular Cylinder\",\"authors\":\"Alliche Sid Ahmed, Bennia Ayoub, Bouaziz Mohamed Najib, Bouaziz Amina Manal\",\"doi\":\"10.59441/ijame/181643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work conducts a numerical examination into the influence of a magnetic field and viscosity dissipation on the movement of a micropolar fluid over the surface of a vertical, hollow circular cylinder via conjugate mixed convection. In this investigation, we obtained a numerical solution for a non-linear differential equations-based modeling system by employing MATLAB and the bvp4c solver, which operates on a two-equation model. We show graphically how micropolar materials, conjugate heat transfer, viscous energy dissipation, buoyancy factors and magnetic field affect the temperature at the interface, local skin friction and heat transfer. By contrasting the acquired results with those found in the published research, which exhibit a high degree of concordance, the validity of the methodology is proven.\",\"PeriodicalId\":37871,\"journal\":{\"name\":\"International Journal of Applied Mechanics and Engineering\",\"volume\":\"78 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mechanics and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59441/ijame/181643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mechanics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59441/ijame/181643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过共轭混合对流,对磁场和粘性耗散对微极流体在垂直空心圆柱体表面运动的影响进行了数值研究。在这项研究中,我们使用 MATLAB 和 bvp4c 求解器,对基于非线性微分方程的建模系统进行了数值求解。我们用图表展示了微极性材料、共轭传热、粘性能量耗散、浮力因素和磁场如何影响界面温度、局部表皮摩擦和传热。通过将获得的结果与已发表的研究结果进行对比(两者显示出高度的一致性),证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Conjugate Mixed Convection of a Micropolar Fluid Over a Vertical Hollow Circular Cylinder
This work conducts a numerical examination into the influence of a magnetic field and viscosity dissipation on the movement of a micropolar fluid over the surface of a vertical, hollow circular cylinder via conjugate mixed convection. In this investigation, we obtained a numerical solution for a non-linear differential equations-based modeling system by employing MATLAB and the bvp4c solver, which operates on a two-equation model. We show graphically how micropolar materials, conjugate heat transfer, viscous energy dissipation, buoyancy factors and magnetic field affect the temperature at the interface, local skin friction and heat transfer. By contrasting the acquired results with those found in the published research, which exhibit a high degree of concordance, the validity of the methodology is proven.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Applied Mechanics and Engineering
International Journal of Applied Mechanics and Engineering Engineering-Civil and Structural Engineering
CiteScore
1.50
自引率
0.00%
发文量
45
审稿时长
35 weeks
期刊介绍: INTERNATIONAL JOURNAL OF APPLIED MECHANICS AND ENGINEERING is an archival journal which aims to publish high quality original papers. These should encompass the best fundamental and applied science with an emphasis on their application to the highest engineering practice. The scope includes all aspects of science and engineering which have relevance to: biomechanics, elasticity, plasticity, vibrations, mechanics of structures, mechatronics, plates & shells, magnetohydrodynamics, rheology, thermodynamics, tribology, fluid dynamics.
期刊最新文献
The detrimental effect of thermal exposure and thermophoresis on MHD flow with combined mass and heat transmission employing permeability Conjugate Mixed Convection of a Micropolar Fluid Over a Vertical Hollow Circular Cylinder chattering analysis of an electro-hydraulic backstepping velocity controller Effect of Angular Speed Variations on the Nonlinear Vibrations of a Rotational Spring-Mass System Entropy Generation Analysis OF Mhd Micropolar – Nanofluid Flow Over A Moved And Permeable Vertical Plate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1