利用 MobileNetV2FC、ResNet101FC 和 DenseNet121FC 的集合诊断棉花氮营养水平

Peipei Chen, Jianguo Dai, Guoshun Zhang, Wenqing Hou, Zhengyang Mu, Yujuan Cao
{"title":"利用 MobileNetV2FC、ResNet101FC 和 DenseNet121FC 的集合诊断棉花氮营养水平","authors":"Peipei Chen, Jianguo Dai, Guoshun Zhang, Wenqing Hou, Zhengyang Mu, Yujuan Cao","doi":"10.3390/agriculture14040525","DOIUrl":null,"url":null,"abstract":"Nitrogen plays a crucial role in cotton growth, making the precise diagnosis of its nutrition levels vital for the scientific and rational application of fertilizers. Addressing this need, our study introduced an EMRDFC-based diagnosis model specifically for cotton nitrogen nutrition levels. In our field experiments, cotton was subjected to five different nitrogen application rates. To enhance the diagnostic capabilities of our model, we employed ResNet101, MobileNetV2, and DenseNet121 as base models and integrated the CBAM (Convolutional Block Attention Module) into each to improve their ability to differentiate among various nitrogen levels. Additionally, the Focal loss function was introduced to address issues of data imbalance. The model’s effectiveness was further augmented by employing integration strategies such as relative majority voting, simple averaging, and weighted averaging. Our experimental results indicated significant accuracy improvements in the enhanced ResNet101, MobileNetV2, and DenseNet121 models by 2.3%, 2.91%, and 2.93%, respectively. Notably, the integration of these models consistently improved accuracy, with gains of 0.87% and 1.73% compared to the highest-performing single model, DenseNet121FC. The optimal ensemble model, which utilized the weighted average method, demonstrated superior learning and generalization capabilities. The proposed EMRDFC model shows great promise in precisely identifying cotton nitrogen status, offering critical insights into the diagnosis of crop nutrient status. This research contributes significantly to the field of agricultural technology by providing a reliable tool for nitrogen-level assessment in cotton cultivation.","PeriodicalId":503580,"journal":{"name":"Agriculture","volume":"14 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagnosis of Cotton Nitrogen Nutrient Levels Using Ensemble MobileNetV2FC, ResNet101FC, and DenseNet121FC\",\"authors\":\"Peipei Chen, Jianguo Dai, Guoshun Zhang, Wenqing Hou, Zhengyang Mu, Yujuan Cao\",\"doi\":\"10.3390/agriculture14040525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nitrogen plays a crucial role in cotton growth, making the precise diagnosis of its nutrition levels vital for the scientific and rational application of fertilizers. Addressing this need, our study introduced an EMRDFC-based diagnosis model specifically for cotton nitrogen nutrition levels. In our field experiments, cotton was subjected to five different nitrogen application rates. To enhance the diagnostic capabilities of our model, we employed ResNet101, MobileNetV2, and DenseNet121 as base models and integrated the CBAM (Convolutional Block Attention Module) into each to improve their ability to differentiate among various nitrogen levels. Additionally, the Focal loss function was introduced to address issues of data imbalance. The model’s effectiveness was further augmented by employing integration strategies such as relative majority voting, simple averaging, and weighted averaging. Our experimental results indicated significant accuracy improvements in the enhanced ResNet101, MobileNetV2, and DenseNet121 models by 2.3%, 2.91%, and 2.93%, respectively. Notably, the integration of these models consistently improved accuracy, with gains of 0.87% and 1.73% compared to the highest-performing single model, DenseNet121FC. The optimal ensemble model, which utilized the weighted average method, demonstrated superior learning and generalization capabilities. The proposed EMRDFC model shows great promise in precisely identifying cotton nitrogen status, offering critical insights into the diagnosis of crop nutrient status. This research contributes significantly to the field of agricultural technology by providing a reliable tool for nitrogen-level assessment in cotton cultivation.\",\"PeriodicalId\":503580,\"journal\":{\"name\":\"Agriculture\",\"volume\":\"14 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agriculture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/agriculture14040525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agriculture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/agriculture14040525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

氮在棉花生长中起着至关重要的作用,因此精确诊断其营养水平对科学合理施肥至关重要。针对这一需求,我们的研究专门针对棉花氮素营养水平引入了基于 EMRDFC 的诊断模型。在田间试验中,我们对棉花施用了五种不同的氮肥。为了提高模型的诊断能力,我们采用了 ResNet101、MobileNetV2 和 DenseNet121 作为基础模型,并在每个模型中集成了 CBAM(卷积块注意力模块),以提高它们区分不同氮素水平的能力。此外,还引入了 Focal 损失函数,以解决数据不平衡问题。通过采用相对多数表决、简单平均和加权平均等整合策略,进一步提高了模型的有效性。实验结果表明,增强后的 ResNet101、MobileNetV2 和 DenseNet121 模型的准确率分别提高了 2.3%、2.91% 和 2.93%。值得注意的是,与性能最高的单一模型 DenseNet121FC 相比,这些模型的集成持续提高了准确率,分别提高了 0.87% 和 1.73%。利用加权平均法的最优集合模型表现出了卓越的学习和泛化能力。所提出的 EMRDFC 模型在精确识别棉花氮素状态方面显示出巨大潜力,为作物营养状况诊断提供了重要见解。这项研究为棉花种植中的氮含量评估提供了可靠的工具,为农业技术领域做出了重大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Diagnosis of Cotton Nitrogen Nutrient Levels Using Ensemble MobileNetV2FC, ResNet101FC, and DenseNet121FC
Nitrogen plays a crucial role in cotton growth, making the precise diagnosis of its nutrition levels vital for the scientific and rational application of fertilizers. Addressing this need, our study introduced an EMRDFC-based diagnosis model specifically for cotton nitrogen nutrition levels. In our field experiments, cotton was subjected to five different nitrogen application rates. To enhance the diagnostic capabilities of our model, we employed ResNet101, MobileNetV2, and DenseNet121 as base models and integrated the CBAM (Convolutional Block Attention Module) into each to improve their ability to differentiate among various nitrogen levels. Additionally, the Focal loss function was introduced to address issues of data imbalance. The model’s effectiveness was further augmented by employing integration strategies such as relative majority voting, simple averaging, and weighted averaging. Our experimental results indicated significant accuracy improvements in the enhanced ResNet101, MobileNetV2, and DenseNet121 models by 2.3%, 2.91%, and 2.93%, respectively. Notably, the integration of these models consistently improved accuracy, with gains of 0.87% and 1.73% compared to the highest-performing single model, DenseNet121FC. The optimal ensemble model, which utilized the weighted average method, demonstrated superior learning and generalization capabilities. The proposed EMRDFC model shows great promise in precisely identifying cotton nitrogen status, offering critical insights into the diagnosis of crop nutrient status. This research contributes significantly to the field of agricultural technology by providing a reliable tool for nitrogen-level assessment in cotton cultivation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Distribution and Pollution Pathway Analysis of Perfluoroalkyl Acids (PFAAs) in a Typical Agricultural Plastic Greenhouse for Cultivated Vegetables Review of the Report on the Nutritional and Health-Promoting Values of Species of the Rubus L. Genus Farmers’ Willingness to Engage in Ecological Compensation for Crop Rotation in China’s Black Soil Regions Influence of Growth Stages and Additives on the Fermentation Quality and Microbial Profiles of Whole-Plant Millet Silage The Brown Marmorated Stink Bug (Hemiptera: Pentatomidae)—A Major Challenge for Global Plant Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1