使用有限元法评估非线性粘弹性材料的性能

L. Sabri, Adnan Naji, Jameel Al-Tamimi, Fathi Alshamma, M. N. Mohammed, Kareem N. Salloomi, O. Abdullah
{"title":"使用有限元法评估非线性粘弹性材料的性能","authors":"L. Sabri, Adnan Naji, Jameel Al-Tamimi, Fathi Alshamma, M. N. Mohammed, Kareem N. Salloomi, O. Abdullah","doi":"10.59441/ijame/184138","DOIUrl":null,"url":null,"abstract":"This research paper applies the finite element method as a methodology to evaluate the structural performance of nonlinear viscoelastic solids. A finite element algorithm was built and developed to simulate the mathematical nonlinear viscoelastic material behavior based on incremental constitutive equations. The derived Equation of the incremental constitutive included the complete strain and stress histories. The Schapery’s nonlinear viscoelastic material model was integrated within the displacement-based finite element environment to perform the analysis. A modified Newton-Raphson technique was used to solve the nonlinear part in the resultant equations. In this work, the deviatoric and volumetric strain–stress relations were decoupled, and the hereditary strains were updated at the end of each time increment. It is worth mentioning that the developed algorithm can be effectively employed for all the permissible values of Poisson’s ratio by using a selective integration procedure. The algorithm was tested for a number of applications, and the results were compared with some previously published experimental results. A small percentage error of (1%) was observed comparing the published experimental results. The developed algorithm can be considered a promising numerical tool that overcomes convergence issues, enhancing equilibrium with high-accuracy results.","PeriodicalId":37871,"journal":{"name":"International Journal of Applied Mechanics and Engineering","volume":"101 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Evaluation of Nonlinear Viscoelastic Materials using Finite Element Method\",\"authors\":\"L. Sabri, Adnan Naji, Jameel Al-Tamimi, Fathi Alshamma, M. N. Mohammed, Kareem N. Salloomi, O. Abdullah\",\"doi\":\"10.59441/ijame/184138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research paper applies the finite element method as a methodology to evaluate the structural performance of nonlinear viscoelastic solids. A finite element algorithm was built and developed to simulate the mathematical nonlinear viscoelastic material behavior based on incremental constitutive equations. The derived Equation of the incremental constitutive included the complete strain and stress histories. The Schapery’s nonlinear viscoelastic material model was integrated within the displacement-based finite element environment to perform the analysis. A modified Newton-Raphson technique was used to solve the nonlinear part in the resultant equations. In this work, the deviatoric and volumetric strain–stress relations were decoupled, and the hereditary strains were updated at the end of each time increment. It is worth mentioning that the developed algorithm can be effectively employed for all the permissible values of Poisson’s ratio by using a selective integration procedure. The algorithm was tested for a number of applications, and the results were compared with some previously published experimental results. A small percentage error of (1%) was observed comparing the published experimental results. The developed algorithm can be considered a promising numerical tool that overcomes convergence issues, enhancing equilibrium with high-accuracy results.\",\"PeriodicalId\":37871,\"journal\":{\"name\":\"International Journal of Applied Mechanics and Engineering\",\"volume\":\"101 17\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mechanics and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59441/ijame/184138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mechanics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59441/ijame/184138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究论文采用有限元法作为评估非线性粘弹性固体结构性能的方法。建立并开发了一种有限元算法,用于模拟基于增量构成方程的数学非线性粘弹性材料行为。推导出的增量构成方程包括完整的应变和应力历史。Schapery 的非线性粘弹性材料模型被集成到基于位移的有限元环境中进行分析。结果方程中的非线性部分采用改进的牛顿-拉斐森技术求解。在这项工作中,偏差和体积应变应力关系被解耦,遗传应变在每个时间增量结束时更新。值得一提的是,通过使用选择性积分程序,所开发的算法可有效适用于泊松比的所有允许值。对该算法进行了一系列应用测试,并将结果与之前公布的一些实验结果进行了比较。与已公布的实验结果相比,发现误差很小(1%)。可以认为所开发的算法是一种很有前途的数值工具,它克服了收敛问题,以高精度的结果增强了平衡性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Evaluation of Nonlinear Viscoelastic Materials using Finite Element Method
This research paper applies the finite element method as a methodology to evaluate the structural performance of nonlinear viscoelastic solids. A finite element algorithm was built and developed to simulate the mathematical nonlinear viscoelastic material behavior based on incremental constitutive equations. The derived Equation of the incremental constitutive included the complete strain and stress histories. The Schapery’s nonlinear viscoelastic material model was integrated within the displacement-based finite element environment to perform the analysis. A modified Newton-Raphson technique was used to solve the nonlinear part in the resultant equations. In this work, the deviatoric and volumetric strain–stress relations were decoupled, and the hereditary strains were updated at the end of each time increment. It is worth mentioning that the developed algorithm can be effectively employed for all the permissible values of Poisson’s ratio by using a selective integration procedure. The algorithm was tested for a number of applications, and the results were compared with some previously published experimental results. A small percentage error of (1%) was observed comparing the published experimental results. The developed algorithm can be considered a promising numerical tool that overcomes convergence issues, enhancing equilibrium with high-accuracy results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Applied Mechanics and Engineering
International Journal of Applied Mechanics and Engineering Engineering-Civil and Structural Engineering
CiteScore
1.50
自引率
0.00%
发文量
45
审稿时长
35 weeks
期刊介绍: INTERNATIONAL JOURNAL OF APPLIED MECHANICS AND ENGINEERING is an archival journal which aims to publish high quality original papers. These should encompass the best fundamental and applied science with an emphasis on their application to the highest engineering practice. The scope includes all aspects of science and engineering which have relevance to: biomechanics, elasticity, plasticity, vibrations, mechanics of structures, mechatronics, plates & shells, magnetohydrodynamics, rheology, thermodynamics, tribology, fluid dynamics.
期刊最新文献
The detrimental effect of thermal exposure and thermophoresis on MHD flow with combined mass and heat transmission employing permeability Conjugate Mixed Convection of a Micropolar Fluid Over a Vertical Hollow Circular Cylinder chattering analysis of an electro-hydraulic backstepping velocity controller Effect of Angular Speed Variations on the Nonlinear Vibrations of a Rotational Spring-Mass System Entropy Generation Analysis OF Mhd Micropolar – Nanofluid Flow Over A Moved And Permeable Vertical Plate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1