比较 SARIMA、带 STL 分解的袋式指数平滑法和鲁棒 STL 分解法预测红辣椒产量

Titin Agustina, Anwar Fitrianto, Indahwati
{"title":"比较 SARIMA、带 STL 分解的袋式指数平滑法和鲁棒 STL 分解法预测红辣椒产量","authors":"Titin Agustina, Anwar Fitrianto, Indahwati","doi":"10.32628/ijsrset2411146","DOIUrl":null,"url":null,"abstract":"Time series analysis enables the identification of trends and patterns in data, allowing for the development of forecasting models that predict future values. One effective approach for forecasting seasonal time series data is the Seasonal Autoregressive Integrated Moving Average (SARIMA) method. Bagging Exponential Smoothing with STL Decomposition (BES-STL) is an ensemble machine learning method aimed at enhancing forecasting accuracy. STL Method, which stands for Seasonal-Trend decomposition using Loess, is utilized to decompose time series data into three components, namely trend, seasonal, and remainder components. In the remainder component, the process of bootstrap aggregation (bagging) with Moving Block Bootstrapping (MBB) is used to obtain synthetic data, followed by averaging the value by month from the entire series as the forecast results. A comparative analysis was conducted using the SARIMA, BES-STL, and BES-RSTL models. The optimal model, with the lowest MAPE and RMSE, is then implemented to predict national red chili production. The results indicate that the SARIMA(1,1,1)(0,1,1)12 model has the best performance with a MAPE of 7.06 and a RMSE of 95,473. The top-performing model is utilized to forecast data from January to December 2022. Additionally, the forecasted results are compared to the actual data, resulting in a highly precise MAPE of 5.39.","PeriodicalId":14228,"journal":{"name":"International Journal of Scientific Research in Science, Engineering and Technology","volume":" 1114","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of SARIMA, Bagging Exponential Smoothing with STL Decomposition and Robust STL Decomposition for Forecasting Red Chili Production\",\"authors\":\"Titin Agustina, Anwar Fitrianto, Indahwati\",\"doi\":\"10.32628/ijsrset2411146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time series analysis enables the identification of trends and patterns in data, allowing for the development of forecasting models that predict future values. One effective approach for forecasting seasonal time series data is the Seasonal Autoregressive Integrated Moving Average (SARIMA) method. Bagging Exponential Smoothing with STL Decomposition (BES-STL) is an ensemble machine learning method aimed at enhancing forecasting accuracy. STL Method, which stands for Seasonal-Trend decomposition using Loess, is utilized to decompose time series data into three components, namely trend, seasonal, and remainder components. In the remainder component, the process of bootstrap aggregation (bagging) with Moving Block Bootstrapping (MBB) is used to obtain synthetic data, followed by averaging the value by month from the entire series as the forecast results. A comparative analysis was conducted using the SARIMA, BES-STL, and BES-RSTL models. The optimal model, with the lowest MAPE and RMSE, is then implemented to predict national red chili production. The results indicate that the SARIMA(1,1,1)(0,1,1)12 model has the best performance with a MAPE of 7.06 and a RMSE of 95,473. The top-performing model is utilized to forecast data from January to December 2022. Additionally, the forecasted results are compared to the actual data, resulting in a highly precise MAPE of 5.39.\",\"PeriodicalId\":14228,\"journal\":{\"name\":\"International Journal of Scientific Research in Science, Engineering and Technology\",\"volume\":\" 1114\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Scientific Research in Science, Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32628/ijsrset2411146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Scientific Research in Science, Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32628/ijsrset2411146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

时间序列分析能够识别数据中的趋势和模式,从而建立预测未来值的预测模型。预测季节性时间序列数据的一种有效方法是季节自回归综合移动平均法(SARIMA)。Bagging Exponential Smoothing with STL Decomposition (BES-STL) 是一种旨在提高预测准确性的集合机器学习方法。STL 方法是使用黄土进行季节-趋势分解的缩写,用于将时间序列数据分解为三个部分,即趋势部分、季节部分和剩余部分。在剩余部分中,使用移动块引导法(MBB)进行引导聚合(bagging),以获得合成数据,然后从整个序列中按月取平均值作为预测结果。使用 SARIMA、BES-STL 和 BES-RSTL 模型进行了比较分析。然后采用 MAPE 和 RMSE 最低的最优模型预测全国红辣椒产量。结果表明,SARIMA(1,1,1)(0,1,1)12 模型的 MAPE 为 7.06,RMSE 为 95,473,表现最佳。利用性能最好的模型预测了 2022 年 1 月至 12 月的数据。此外,还将预测结果与实际数据进行了比较,结果显示 MAPE 为 5.39,非常精确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of SARIMA, Bagging Exponential Smoothing with STL Decomposition and Robust STL Decomposition for Forecasting Red Chili Production
Time series analysis enables the identification of trends and patterns in data, allowing for the development of forecasting models that predict future values. One effective approach for forecasting seasonal time series data is the Seasonal Autoregressive Integrated Moving Average (SARIMA) method. Bagging Exponential Smoothing with STL Decomposition (BES-STL) is an ensemble machine learning method aimed at enhancing forecasting accuracy. STL Method, which stands for Seasonal-Trend decomposition using Loess, is utilized to decompose time series data into three components, namely trend, seasonal, and remainder components. In the remainder component, the process of bootstrap aggregation (bagging) with Moving Block Bootstrapping (MBB) is used to obtain synthetic data, followed by averaging the value by month from the entire series as the forecast results. A comparative analysis was conducted using the SARIMA, BES-STL, and BES-RSTL models. The optimal model, with the lowest MAPE and RMSE, is then implemented to predict national red chili production. The results indicate that the SARIMA(1,1,1)(0,1,1)12 model has the best performance with a MAPE of 7.06 and a RMSE of 95,473. The top-performing model is utilized to forecast data from January to December 2022. Additionally, the forecasted results are compared to the actual data, resulting in a highly precise MAPE of 5.39.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
UGC Guidelines on Sustainable and Vibrant University- Industry Linkage System for Indian Universities, 2024 Leachate as a Fertilizer Artificial Intelligence in Healthcare : A Review Advancements in Quadcopter Development through Additive Manufacturing: A Comprehensive Review Sensing Human Emotion using Emerging Machine Learning Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1