双酚 C 环氧巴豆酸酯及其纤维增强复合材料的合成与表征

IF 0.3 4区 材料科学 Q4 POLYMER SCIENCE Journal of Polymer Materials Pub Date : 2024-03-22 DOI:10.32381/jpm.2023.40.3-4.9
P. H. Parsania, Jignesh V. Patel, J. Patel
{"title":"双酚 C 环氧巴豆酸酯及其纤维增强复合材料的合成与表征","authors":"P. H. Parsania, Jignesh V. Patel, J. Patel","doi":"10.32381/jpm.2023.40.3-4.9","DOIUrl":null,"url":null,"abstract":"Bisphenol-C epoxy crotonate resin was synthesized by reacting 8.09g epoxy resin of bisphenol- C, and 2.15g crotonic acid using 25 mL 1,4-dioxane as a solvent, and 1 mL triethylamine as a catalyst at reflux temperature for 1-6 h. Solid epoxy crotonate (ECCR) is highly soluble in common organic solvents. ECCR was characterized by its acid (24.5-1.5 mg KOH/g) and hydroxyl (504.5-678.4 mg KOH/g) values. The structure of ECCR is supported by FTIR and 1HNMR spectroscopic methods. A DSC endothermic transition at 229oC indicated melting followed by thermal polymerization of ECCR. ECCR is thermally stable up to 320oC and follows three-step degradation kinetics. The first step followed first-order degradation kinetics, while the second and third steps followed one-half-order degradation kinetics. High values of kinetic parameters suggested the rigid nature of the crosslinked resin. Jute-, Glass- and Jute-natural fiber-ECCR composites showed moderate tensile strength, flexural strength, electric strength, and volume resistivity due to the rigid nature and poor interfacial adhesion of the composites. J-ECCR and G-ECCR composites showed high water absorption tendency and excellent hydrolytic stability against water, 10% aq. HCl and 10% aq. NaCl and even in boiling water. Mechanical and electrical properties and water absorption tendency of the composites indicated their usefulness as low load-bearing housing and insulating materials. They can also be utilized in harsh environmental conditions.","PeriodicalId":50083,"journal":{"name":"Journal of Polymer Materials","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Characterization of Bisphenol-C Epoxy Crotonate and Its Fiber-Reinforced Composites\",\"authors\":\"P. H. Parsania, Jignesh V. Patel, J. Patel\",\"doi\":\"10.32381/jpm.2023.40.3-4.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bisphenol-C epoxy crotonate resin was synthesized by reacting 8.09g epoxy resin of bisphenol- C, and 2.15g crotonic acid using 25 mL 1,4-dioxane as a solvent, and 1 mL triethylamine as a catalyst at reflux temperature for 1-6 h. Solid epoxy crotonate (ECCR) is highly soluble in common organic solvents. ECCR was characterized by its acid (24.5-1.5 mg KOH/g) and hydroxyl (504.5-678.4 mg KOH/g) values. The structure of ECCR is supported by FTIR and 1HNMR spectroscopic methods. A DSC endothermic transition at 229oC indicated melting followed by thermal polymerization of ECCR. ECCR is thermally stable up to 320oC and follows three-step degradation kinetics. The first step followed first-order degradation kinetics, while the second and third steps followed one-half-order degradation kinetics. High values of kinetic parameters suggested the rigid nature of the crosslinked resin. Jute-, Glass- and Jute-natural fiber-ECCR composites showed moderate tensile strength, flexural strength, electric strength, and volume resistivity due to the rigid nature and poor interfacial adhesion of the composites. J-ECCR and G-ECCR composites showed high water absorption tendency and excellent hydrolytic stability against water, 10% aq. HCl and 10% aq. NaCl and even in boiling water. Mechanical and electrical properties and water absorption tendency of the composites indicated their usefulness as low load-bearing housing and insulating materials. They can also be utilized in harsh environmental conditions.\",\"PeriodicalId\":50083,\"journal\":{\"name\":\"Journal of Polymer Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymer Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.32381/jpm.2023.40.3-4.9\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.32381/jpm.2023.40.3-4.9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

以 25 mL 1,4-二氧六环为溶剂,1 mL 三乙胺为催化剂,在回流温度下反应 1-6 小时,合成了 8.09g 双酚 C 环氧巴豆酸树脂和 2.15g 巴豆酸。固体环氧巴豆酸树脂 (ECCR) 极易溶于普通有机溶剂。ECCR 的特征在于其酸值(24.5-1.5 毫克 KOH/克)和羟基值(504.5-678.4 毫克 KOH/克)。傅立叶变换红外光谱和 1HNMR 光谱方法支持 ECCR 的结构。摄氏 229 度的 DSC 内热转变表明,ECCR 在熔化后发生了热聚合。ECCR 的热稳定性可达 320 摄氏度,并遵循三步降解动力学。第一步遵循一阶降解动力学,第二和第三步遵循半阶降解动力学。高动力学参数值表明交联树脂具有刚性。黄麻、玻璃和黄麻-天然纤维-ECCR 复合材料的拉伸强度、弯曲强度、电强度和体积电阻率适中,这是因为复合材料的刚性和界面粘附性较差。J-ECCR 和 G-ECCR 复合材料具有较高的吸水性,对水、10% 的盐酸和 10%的氯化钠甚至在沸水中都具有良好的水解稳定性。复合材料的机械和电气性能以及吸水性表明,它们可用作低承重外壳和绝缘材料。它们还可以在恶劣的环境条件下使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis and Characterization of Bisphenol-C Epoxy Crotonate and Its Fiber-Reinforced Composites
Bisphenol-C epoxy crotonate resin was synthesized by reacting 8.09g epoxy resin of bisphenol- C, and 2.15g crotonic acid using 25 mL 1,4-dioxane as a solvent, and 1 mL triethylamine as a catalyst at reflux temperature for 1-6 h. Solid epoxy crotonate (ECCR) is highly soluble in common organic solvents. ECCR was characterized by its acid (24.5-1.5 mg KOH/g) and hydroxyl (504.5-678.4 mg KOH/g) values. The structure of ECCR is supported by FTIR and 1HNMR spectroscopic methods. A DSC endothermic transition at 229oC indicated melting followed by thermal polymerization of ECCR. ECCR is thermally stable up to 320oC and follows three-step degradation kinetics. The first step followed first-order degradation kinetics, while the second and third steps followed one-half-order degradation kinetics. High values of kinetic parameters suggested the rigid nature of the crosslinked resin. Jute-, Glass- and Jute-natural fiber-ECCR composites showed moderate tensile strength, flexural strength, electric strength, and volume resistivity due to the rigid nature and poor interfacial adhesion of the composites. J-ECCR and G-ECCR composites showed high water absorption tendency and excellent hydrolytic stability against water, 10% aq. HCl and 10% aq. NaCl and even in boiling water. Mechanical and electrical properties and water absorption tendency of the composites indicated their usefulness as low load-bearing housing and insulating materials. They can also be utilized in harsh environmental conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Polymer Materials
Journal of Polymer Materials 工程技术-高分子科学
CiteScore
1.00
自引率
0.00%
发文量
27
审稿时长
4.7 months
期刊介绍: Journal of Polymer Materials-An International Journal is published quarterly (4 issues per year), which covers broadly most of the important and fundamental areas of Polymer Science and Technology. It reports reviews on current topics and original research results on synthesis of monomers and polymers, polymer analysis, characterization and testing, properties of polymers, structure-property relation, polymer processing and fabrication, and polymer applications. Research and development activities on functional polymers, polymer blends and alloys, composites and nanocomposites, paints and surface coatings, rubbers and elastomeric materials, and adhesives are also published.
期刊最新文献
Enhanced Mechanical and Electrical Properties of Styrene Butadiene Rubber Nanocomposites with Graphene Platelet Nano-powder Rheological Study on Blend Solutions of Non-mulberry Silk Fibroin and Gelatin Biopolymers Effect of Tetramethylurea (TMU) on Polysulfone Membrane Performance for Atrazine-containing Wastewater Treatment A Brief Review of Surface Modification of Carbonyl Iron Powders (CIPs) for Magnetorheological Fluid Applications Mathematical Modelling and Simulations of Active Direct Methanol Fuel Cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1