基于多模态数据和循环神经网络的电子商务平台商品需求预测

Cunbing Li
{"title":"基于多模态数据和循环神经网络的电子商务平台商品需求预测","authors":"Cunbing Li","doi":"10.1016/j.iswa.2024.200364","DOIUrl":null,"url":null,"abstract":"<div><p>The study proposes a cascaded hybrid neural network commodity demand prediction model based on multimodal data. This model aims to improve the accuracy of commodity demand forecasts on e-commerce platforms. By constructing multimodal data feature clusters and utilizing a spatial feature fusion strategy, historical order information, and product evaluation sentiment data are integrated. The model combines the advantages of bi-directional long and short-term memory networks and bi-directional gated recurrent unit networks. The proposed cascaded hybrid strategy-based model significantly enhances accuracy in commodity demand forecasting. Results indicated an average absolute error of 0.1682 and root mean square error of 0.4537 for weekly commodity forecasts. For long-term commodity demand, the average absolute error was 0.8611 with a root mean square error of 8.1938. These outcomes highlight the algorithm's high prediction accuracy, making it valuable for commodity demand prediction on e-commerce platforms and providing a framework for effective inventory management.</p></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"22 ","pages":"Article 200364"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667305324000401/pdfft?md5=cee9a74733fcb990df5148639b8b38fd&pid=1-s2.0-S2667305324000401-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Commodity demand forecasting based on multimodal data and recurrent neural networks for E-commerce platforms\",\"authors\":\"Cunbing Li\",\"doi\":\"10.1016/j.iswa.2024.200364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The study proposes a cascaded hybrid neural network commodity demand prediction model based on multimodal data. This model aims to improve the accuracy of commodity demand forecasts on e-commerce platforms. By constructing multimodal data feature clusters and utilizing a spatial feature fusion strategy, historical order information, and product evaluation sentiment data are integrated. The model combines the advantages of bi-directional long and short-term memory networks and bi-directional gated recurrent unit networks. The proposed cascaded hybrid strategy-based model significantly enhances accuracy in commodity demand forecasting. Results indicated an average absolute error of 0.1682 and root mean square error of 0.4537 for weekly commodity forecasts. For long-term commodity demand, the average absolute error was 0.8611 with a root mean square error of 8.1938. These outcomes highlight the algorithm's high prediction accuracy, making it valuable for commodity demand prediction on e-commerce platforms and providing a framework for effective inventory management.</p></div>\",\"PeriodicalId\":100684,\"journal\":{\"name\":\"Intelligent Systems with Applications\",\"volume\":\"22 \",\"pages\":\"Article 200364\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667305324000401/pdfft?md5=cee9a74733fcb990df5148639b8b38fd&pid=1-s2.0-S2667305324000401-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Systems with Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667305324000401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667305324000401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种基于多模态数据的级联混合神经网络商品需求预测模型。该模型旨在提高电子商务平台上商品需求预测的准确性。通过构建多模态数据特征集群并利用空间特征融合策略,整合了历史订单信息和商品评价情感数据。该模型结合了双向长短期记忆网络和双向门控递归单元网络的优势。所提出的基于级联混合策略的模型大大提高了商品需求预测的准确性。结果表明,每周商品预测的平均绝对误差为 0.1682,均方根误差为 0.4537。对于长期商品需求,平均绝对误差为 0.8611,均方根误差为 8.1938。这些结果凸显了该算法的高预测准确性,使其对电子商务平台的商品需求预测具有重要价值,并为有效的库存管理提供了一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Commodity demand forecasting based on multimodal data and recurrent neural networks for E-commerce platforms

The study proposes a cascaded hybrid neural network commodity demand prediction model based on multimodal data. This model aims to improve the accuracy of commodity demand forecasts on e-commerce platforms. By constructing multimodal data feature clusters and utilizing a spatial feature fusion strategy, historical order information, and product evaluation sentiment data are integrated. The model combines the advantages of bi-directional long and short-term memory networks and bi-directional gated recurrent unit networks. The proposed cascaded hybrid strategy-based model significantly enhances accuracy in commodity demand forecasting. Results indicated an average absolute error of 0.1682 and root mean square error of 0.4537 for weekly commodity forecasts. For long-term commodity demand, the average absolute error was 0.8611 with a root mean square error of 8.1938. These outcomes highlight the algorithm's high prediction accuracy, making it valuable for commodity demand prediction on e-commerce platforms and providing a framework for effective inventory management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
期刊最新文献
MapReduce teaching learning based optimization algorithm for solving CEC-2013 LSGO benchmark Testsuit Intelligent gear decision method for vehicle automatic transmission system based on data mining Design and implementation of EventsKG for situational monitoring and security intelligence in India: An open-source intelligence gathering approach Ideological orientation and extremism detection in online social networking sites: A systematic review Multi-objective optimization of power networks integrating electric vehicles and wind energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1