基于改进型轻量级模型迷你网的优化物体检测

Qi Chen Qi Chen, Xinyi Gao Qi Chen, Renjie Li Xinyi Gao, Yong Zhang Renjie Li
{"title":"基于改进型轻量级模型迷你网的优化物体检测","authors":"Qi Chen Qi Chen, Xinyi Gao Qi Chen, Renjie Li Xinyi Gao, Yong Zhang Renjie Li","doi":"10.53106/160792642024032502005","DOIUrl":null,"url":null,"abstract":"\n This paper proposes a Mini Net lightweight model that can be used for real-time detection. This model works together with Mini Lower and Mini Higher, which greatly improves the detection efficiency while ensuring the accuracy. The Mini module designs both the batch normalization layer and the excitation function at the front end of the module, which realizes efficient convolution, greatly reduces the amount of parameters and computation, and introduces the nonlinearity brought by more layers in the spatial dimension, which can improve the performance of the module extraction capacity. Based on the Mini convolution module, a multi-stage training strategy is proposed. The first stage makes the system fast and stable. In order to improve the overfitting phenomenon of the system, the second and third stages use finer features to improve the detection of small targets, thereby improving the Model training efficiency and detection accuracy.\n \n","PeriodicalId":442331,"journal":{"name":"網際網路技術學刊","volume":"21 84","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized Object Detection Based on The Improved Lightweight Model Mini Net\",\"authors\":\"Qi Chen Qi Chen, Xinyi Gao Qi Chen, Renjie Li Xinyi Gao, Yong Zhang Renjie Li\",\"doi\":\"10.53106/160792642024032502005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper proposes a Mini Net lightweight model that can be used for real-time detection. This model works together with Mini Lower and Mini Higher, which greatly improves the detection efficiency while ensuring the accuracy. The Mini module designs both the batch normalization layer and the excitation function at the front end of the module, which realizes efficient convolution, greatly reduces the amount of parameters and computation, and introduces the nonlinearity brought by more layers in the spatial dimension, which can improve the performance of the module extraction capacity. Based on the Mini convolution module, a multi-stage training strategy is proposed. The first stage makes the system fast and stable. In order to improve the overfitting phenomenon of the system, the second and third stages use finer features to improve the detection of small targets, thereby improving the Model training efficiency and detection accuracy.\\n \\n\",\"PeriodicalId\":442331,\"journal\":{\"name\":\"網際網路技術學刊\",\"volume\":\"21 84\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"網際網路技術學刊\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53106/160792642024032502005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"網際網路技術學刊","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53106/160792642024032502005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种可用于实时检测的 Mini Net 轻量级模型。该模型与 Mini Lower 和 Mini Higher 配合使用,在保证准确性的同时大大提高了检测效率。Mini 模块在模块前端同时设计了批量归一化层和激励函数,实现了高效卷积,大大减少了参数量和计算量,并在空间维度上引入了多层带来的非线性,可以提高模块提取能力的表现。在迷你卷积模块的基础上,提出了多阶段训练策略。第一阶段使系统快速稳定。为了改善系统的过拟合现象,第二和第三阶段使用更精细的特征来提高对小目标的检测能力,从而提高模型训练效率和检测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimized Object Detection Based on The Improved Lightweight Model Mini Net
This paper proposes a Mini Net lightweight model that can be used for real-time detection. This model works together with Mini Lower and Mini Higher, which greatly improves the detection efficiency while ensuring the accuracy. The Mini module designs both the batch normalization layer and the excitation function at the front end of the module, which realizes efficient convolution, greatly reduces the amount of parameters and computation, and introduces the nonlinearity brought by more layers in the spatial dimension, which can improve the performance of the module extraction capacity. Based on the Mini convolution module, a multi-stage training strategy is proposed. The first stage makes the system fast and stable. In order to improve the overfitting phenomenon of the system, the second and third stages use finer features to improve the detection of small targets, thereby improving the Model training efficiency and detection accuracy.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Compact Depth Separable Convolutional Image Filter for Clinical Color Perception Test Hybrid Dynamic Analysis for Android Malware Protected by Anti-Analysis Techniques with DOOLDA An Improved SSD Model for Small Size Work-pieces Recognition in Automatic Production Line A Construction of Knowledge Graph for Semiconductor Industry Chain Based on Lattice-LSTM and PCNN Models Designing a Multi-Criteria Decision-Making Framework to Establish a Value Ranking System for the Quality Evaluation of Long-Term Care Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1