{"title":"使用 Dask 和 Apache Spark 的分布式计算:比较研究","authors":"Ankita Jain, Devendra Singh Sendar, Sarita Mahajan","doi":"10.48047/resmil.v9i1.21","DOIUrl":null,"url":null,"abstract":"In the unexpectedly expanding landscape of dispensed computing, the choice of frameworks profoundly affects the efficiency and scalability of records processing workflows. This comparative take a look at delves into the architectures, overall performance metrics, and consumer reports of main allotted computing frameworks: Dask and Apache Spark. Both frameworks have won prominence for his or her ability to handle huge-scale records processing, yet they diverge of their essential tactics. Dask embraces a flexible mission graph paradigm, even as Apache Spark is predicated on a resilient allotted dataset (RDD) abstraction. This summary presents an outline of our exploration into their ancient development, benchmarking analyses, and adaptableness to numerous computing environments. By evaluating their strengths and boundaries, this observe gives insights vital for practitioners and organizations navigating the dynamic landscape of distributed records processing. As the extent and complexity of information continue to grow exponentially, disbursed computing frameworks have turn out to be instrumental in addressing the computational challenges posed by means of large datasets. Dask and Apache Spark have emerged as powerful gear, every presenting unique solutions for disbursed statistics processing. This comparative take a look at pursuits to offer a nuanced understanding in their architectures, performance traits, and value, supporting practitioners in making knowledgeable selections whilst choosing a framework for distributed computing duties.Understanding the ancient improvement and layout principles of Dask and Apache Spark","PeriodicalId":517991,"journal":{"name":"resmilitaris","volume":"116 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed Computing with Dask and Apache Spark: A Comparative Study\",\"authors\":\"Ankita Jain, Devendra Singh Sendar, Sarita Mahajan\",\"doi\":\"10.48047/resmil.v9i1.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the unexpectedly expanding landscape of dispensed computing, the choice of frameworks profoundly affects the efficiency and scalability of records processing workflows. This comparative take a look at delves into the architectures, overall performance metrics, and consumer reports of main allotted computing frameworks: Dask and Apache Spark. Both frameworks have won prominence for his or her ability to handle huge-scale records processing, yet they diverge of their essential tactics. Dask embraces a flexible mission graph paradigm, even as Apache Spark is predicated on a resilient allotted dataset (RDD) abstraction. This summary presents an outline of our exploration into their ancient development, benchmarking analyses, and adaptableness to numerous computing environments. By evaluating their strengths and boundaries, this observe gives insights vital for practitioners and organizations navigating the dynamic landscape of distributed records processing. As the extent and complexity of information continue to grow exponentially, disbursed computing frameworks have turn out to be instrumental in addressing the computational challenges posed by means of large datasets. Dask and Apache Spark have emerged as powerful gear, every presenting unique solutions for disbursed statistics processing. This comparative take a look at pursuits to offer a nuanced understanding in their architectures, performance traits, and value, supporting practitioners in making knowledgeable selections whilst choosing a framework for distributed computing duties.Understanding the ancient improvement and layout principles of Dask and Apache Spark\",\"PeriodicalId\":517991,\"journal\":{\"name\":\"resmilitaris\",\"volume\":\"116 16\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"resmilitaris\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48047/resmil.v9i1.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"resmilitaris","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48047/resmil.v9i1.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distributed Computing with Dask and Apache Spark: A Comparative Study
In the unexpectedly expanding landscape of dispensed computing, the choice of frameworks profoundly affects the efficiency and scalability of records processing workflows. This comparative take a look at delves into the architectures, overall performance metrics, and consumer reports of main allotted computing frameworks: Dask and Apache Spark. Both frameworks have won prominence for his or her ability to handle huge-scale records processing, yet they diverge of their essential tactics. Dask embraces a flexible mission graph paradigm, even as Apache Spark is predicated on a resilient allotted dataset (RDD) abstraction. This summary presents an outline of our exploration into their ancient development, benchmarking analyses, and adaptableness to numerous computing environments. By evaluating their strengths and boundaries, this observe gives insights vital for practitioners and organizations navigating the dynamic landscape of distributed records processing. As the extent and complexity of information continue to grow exponentially, disbursed computing frameworks have turn out to be instrumental in addressing the computational challenges posed by means of large datasets. Dask and Apache Spark have emerged as powerful gear, every presenting unique solutions for disbursed statistics processing. This comparative take a look at pursuits to offer a nuanced understanding in their architectures, performance traits, and value, supporting practitioners in making knowledgeable selections whilst choosing a framework for distributed computing duties.Understanding the ancient improvement and layout principles of Dask and Apache Spark