N2+ 电子跃迁新面貌:实验和理论

IF 1.4 4区 物理与天体物理 Q4 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Journal of Molecular Spectroscopy Pub Date : 2024-03-01 DOI:10.1016/j.jms.2024.111902
Laiz R. Ventura, Ramon S. da Silva, Jayr Amorim, Carlos E. Fellows
{"title":"N2+ 电子跃迁新面貌:实验和理论","authors":"Laiz R. Ventura,&nbsp;Ramon S. da Silva,&nbsp;Jayr Amorim,&nbsp;Carlos E. Fellows","doi":"10.1016/j.jms.2024.111902","DOIUrl":null,"url":null,"abstract":"<div><p>Neutral and ionic N<sub>2</sub> species exhibit a rich spectrum as a result of the large density of couplings between states with different multiplicities. In this sense, spectra of the molecular ion N<span><math><msubsup><mrow></mrow><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> are investigated combining Fourier transform spectroscopy and <em>ab initio</em> methods. We have reanalyzed the First Negative band System (B<span><math><mrow><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup><msubsup><mrow><mi>Σ</mi></mrow><mrow><mi>u</mi></mrow><mrow><mo>+</mo></mrow></msubsup></mrow></math></span> <span><math><mo>→</mo></math></span> X<span><math><mrow><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup><msubsup><mrow><mi>Σ</mi></mrow><mrow><mi>g</mi></mrow><mrow><mo>+</mo></mrow></msubsup></mrow></math></span>) including five bands not reported previously by Fourier spectroscopy. The spectra were recorded using a resolution of 0.6 cm<sup>−1</sup> and accuracy of 0.005 cm<sup>−1</sup>. These results are then compared with new MRCI+Q/AV6Z calculations. For the first time, transition probabilities are computed for the previously observed 2<span><math><mrow><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>Π</mi></mrow><mrow><mi>g</mi></mrow></msub></mrow></math></span>-A<span><math><mrow><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>Π</mi></mrow><mrow><mi>u</mi></mrow></msub></mrow></math></span> band system. The 2<span><math><mrow><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>Π</mi></mrow><mrow><mi>g</mi></mrow></msub></mrow></math></span> state (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> = 67,029 cm<sup>−1</sup>) has a dissociation energy of 24,787 cm<sup>−1</sup> at <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> = 2.7332 a<sub>0</sub>. The predicted lifetimes for the 2<span><math><mrow><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>Π</mi></mrow><mrow><mi>g</mi></mrow></msub></mrow></math></span>-A<span><math><mrow><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>Π</mi></mrow><mrow><mi>u</mi></mrow></msub></mrow></math></span> emissions are of the order of 170 ns. The calculated transition probabilities A(<span><math><msup><mrow><mi>v</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>=0, <span><math><msup><mrow><mi>v</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msup></math></span>=0) for the B<span><math><mrow><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup><msubsup><mrow><mi>Σ</mi></mrow><mrow><mi>u</mi></mrow><mrow><mo>+</mo></mrow></msubsup></mrow></math></span>-X<span><math><mrow><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup><msubsup><mrow><mi>Σ</mi></mrow><mrow><mi>g</mi></mrow><mrow><mo>+</mo></mrow></msubsup></mrow></math></span> and 2<span><math><mrow><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>Π</mi></mrow><mrow><mi>g</mi></mrow></msub></mrow></math></span>-A<span><math><mrow><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>Π</mi></mrow><mrow><mi>u</mi></mrow></msub></mrow></math></span> bands are 1.156 × 10<sup>7</sup> and 1.716 × 10<sup>3</sup> s<sup>−1</sup>, respectively. The role of spin–orbit (SO) matrix elements in the spectroscopic data of N<span><math><msubsup><mrow></mrow><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> is discussed, including results for SO constants as a function of vibrational level of A<span><math><mrow><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>Π</mi></mrow><mrow><mi>u</mi></mrow></msub></mrow></math></span> state. Our theoretical SO constant A<sub>0</sub>(A<span><math><mrow><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>Π</mi></mrow><mrow><mi>u</mi></mrow></msub></mrow></math></span>) = −73.40 cm<sup>−1</sup> reproduces well the experimental one (−74.67 cm<sup>−1</sup>). SO calculations are also used to investigate spin-forbidden transitions on N<span><math><msubsup><mrow></mrow><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>. The obtained <span><math><mrow><mo>&lt;</mo><msup><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>Π</mi></mrow><mrow><mi>u</mi></mrow></msub><mrow><mo>|</mo><msub><mrow><mover><mrow><mi>H</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>SO</mi></mrow></msub><mo>|</mo></mrow><msup><mrow><mi>a</mi></mrow><mrow><mn>4</mn></mrow></msup><msubsup><mrow><mi>Σ</mi></mrow><mrow><mi>u</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>&gt;</mo><mo>≈</mo></mrow></math></span> 30 cm<sup>−1</sup>. Following a sum-over-states (SOS) methodology, the best estimate for the spin-rotation constant <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> of the X<span><math><mrow><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup><msubsup><mrow><mi>Σ</mi></mrow><mrow><mi>g</mi></mrow><mrow><mo>+</mo></mrow></msubsup></mrow></math></span> and B<span><math><mrow><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup><msubsup><mrow><mi>Σ</mi></mrow><mrow><mi>u</mi></mrow><mrow><mo>+</mo></mrow></msubsup></mrow></math></span> states are 0.0096 and 0.0211 cm<sup>−1</sup>, respectively, in quantitative agreement with the present experimental data of 0.00917(36) and 0.0206(9).</p></div>","PeriodicalId":16367,"journal":{"name":"Journal of Molecular Spectroscopy","volume":"401 ","pages":"Article 111902"},"PeriodicalIF":1.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new look at N2+ electronic transitions: An experimental and theoretical study\",\"authors\":\"Laiz R. Ventura,&nbsp;Ramon S. da Silva,&nbsp;Jayr Amorim,&nbsp;Carlos E. Fellows\",\"doi\":\"10.1016/j.jms.2024.111902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Neutral and ionic N<sub>2</sub> species exhibit a rich spectrum as a result of the large density of couplings between states with different multiplicities. In this sense, spectra of the molecular ion N<span><math><msubsup><mrow></mrow><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> are investigated combining Fourier transform spectroscopy and <em>ab initio</em> methods. We have reanalyzed the First Negative band System (B<span><math><mrow><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup><msubsup><mrow><mi>Σ</mi></mrow><mrow><mi>u</mi></mrow><mrow><mo>+</mo></mrow></msubsup></mrow></math></span> <span><math><mo>→</mo></math></span> X<span><math><mrow><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup><msubsup><mrow><mi>Σ</mi></mrow><mrow><mi>g</mi></mrow><mrow><mo>+</mo></mrow></msubsup></mrow></math></span>) including five bands not reported previously by Fourier spectroscopy. The spectra were recorded using a resolution of 0.6 cm<sup>−1</sup> and accuracy of 0.005 cm<sup>−1</sup>. These results are then compared with new MRCI+Q/AV6Z calculations. For the first time, transition probabilities are computed for the previously observed 2<span><math><mrow><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>Π</mi></mrow><mrow><mi>g</mi></mrow></msub></mrow></math></span>-A<span><math><mrow><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>Π</mi></mrow><mrow><mi>u</mi></mrow></msub></mrow></math></span> band system. The 2<span><math><mrow><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>Π</mi></mrow><mrow><mi>g</mi></mrow></msub></mrow></math></span> state (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> = 67,029 cm<sup>−1</sup>) has a dissociation energy of 24,787 cm<sup>−1</sup> at <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> = 2.7332 a<sub>0</sub>. The predicted lifetimes for the 2<span><math><mrow><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>Π</mi></mrow><mrow><mi>g</mi></mrow></msub></mrow></math></span>-A<span><math><mrow><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>Π</mi></mrow><mrow><mi>u</mi></mrow></msub></mrow></math></span> emissions are of the order of 170 ns. The calculated transition probabilities A(<span><math><msup><mrow><mi>v</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>=0, <span><math><msup><mrow><mi>v</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msup></math></span>=0) for the B<span><math><mrow><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup><msubsup><mrow><mi>Σ</mi></mrow><mrow><mi>u</mi></mrow><mrow><mo>+</mo></mrow></msubsup></mrow></math></span>-X<span><math><mrow><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup><msubsup><mrow><mi>Σ</mi></mrow><mrow><mi>g</mi></mrow><mrow><mo>+</mo></mrow></msubsup></mrow></math></span> and 2<span><math><mrow><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>Π</mi></mrow><mrow><mi>g</mi></mrow></msub></mrow></math></span>-A<span><math><mrow><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>Π</mi></mrow><mrow><mi>u</mi></mrow></msub></mrow></math></span> bands are 1.156 × 10<sup>7</sup> and 1.716 × 10<sup>3</sup> s<sup>−1</sup>, respectively. The role of spin–orbit (SO) matrix elements in the spectroscopic data of N<span><math><msubsup><mrow></mrow><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> is discussed, including results for SO constants as a function of vibrational level of A<span><math><mrow><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>Π</mi></mrow><mrow><mi>u</mi></mrow></msub></mrow></math></span> state. Our theoretical SO constant A<sub>0</sub>(A<span><math><mrow><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>Π</mi></mrow><mrow><mi>u</mi></mrow></msub></mrow></math></span>) = −73.40 cm<sup>−1</sup> reproduces well the experimental one (−74.67 cm<sup>−1</sup>). SO calculations are also used to investigate spin-forbidden transitions on N<span><math><msubsup><mrow></mrow><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>. The obtained <span><math><mrow><mo>&lt;</mo><msup><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>Π</mi></mrow><mrow><mi>u</mi></mrow></msub><mrow><mo>|</mo><msub><mrow><mover><mrow><mi>H</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>SO</mi></mrow></msub><mo>|</mo></mrow><msup><mrow><mi>a</mi></mrow><mrow><mn>4</mn></mrow></msup><msubsup><mrow><mi>Σ</mi></mrow><mrow><mi>u</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>&gt;</mo><mo>≈</mo></mrow></math></span> 30 cm<sup>−1</sup>. Following a sum-over-states (SOS) methodology, the best estimate for the spin-rotation constant <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> of the X<span><math><mrow><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup><msubsup><mrow><mi>Σ</mi></mrow><mrow><mi>g</mi></mrow><mrow><mo>+</mo></mrow></msubsup></mrow></math></span> and B<span><math><mrow><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup><msubsup><mrow><mi>Σ</mi></mrow><mrow><mi>u</mi></mrow><mrow><mo>+</mo></mrow></msubsup></mrow></math></span> states are 0.0096 and 0.0211 cm<sup>−1</sup>, respectively, in quantitative agreement with the present experimental data of 0.00917(36) and 0.0206(9).</p></div>\",\"PeriodicalId\":16367,\"journal\":{\"name\":\"Journal of Molecular Spectroscopy\",\"volume\":\"401 \",\"pages\":\"Article 111902\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Spectroscopy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022285224000298\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Spectroscopy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022285224000298","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于不同倍率状态之间的耦合密度很大,中性和离子 N2 物种表现出丰富的光谱。在这个意义上,我们结合傅立叶变换光谱学和 ab initio 方法研究了分子离子 N2+ 的光谱。我们重新分析了第一负带系统(B2Σu+ → X2Σg+),包括以前未通过傅立叶光谱法报告的五个带。光谱记录的分辨率为 0.6 cm-1,精度为 0.005 cm-1。然后将这些结果与新的 MRCI+Q/AV6Z 计算结果进行比较。首次计算出了之前观测到的 22Πg-A2Πu 波段系统的过渡概率。22Πg 态(Te = 67,029 cm-1)在 Re = 2.7332 a0 时的解离能为 24,787 cm-1。22Πg-A2Πu 发射的预测寿命约为 170 ns。计算得出的 B2Σu+-X2Σg+ 和 22Πg-A2Πu 波段的转变概率 A(v′=0,v′′=0)分别为 1.156 × 107 和 1.716 × 103 s-1。讨论了自旋轨道(SO)矩阵元素在 N2+ 光谱数据中的作用,包括 SO 常数与 A2Πu 态振动水平函数的关系。我们的 SO 理论常数 A0(A2Πu) = -73.40 cm-1 很好地再现了实验值(-74.67 cm-1)。SO 计算还用于研究 N2+ 的自旋禁止跃迁。得到的 <A2Πu|HˆSO|a4Σu+>≈ 30 cm-1。根据自旋态总和(SOS)方法,X2Σg+ 和 B2Σu+ 态的自旋旋转常数γ0 的最佳估计值分别为 0.0096 和 0.0211 cm-1,与目前的实验数据 0.00917(36)和 0.0206(9)定量一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new look at N2+ electronic transitions: An experimental and theoretical study

Neutral and ionic N2 species exhibit a rich spectrum as a result of the large density of couplings between states with different multiplicities. In this sense, spectra of the molecular ion N2+ are investigated combining Fourier transform spectroscopy and ab initio methods. We have reanalyzed the First Negative band System (B2Σu+ X2Σg+) including five bands not reported previously by Fourier spectroscopy. The spectra were recorded using a resolution of 0.6 cm−1 and accuracy of 0.005 cm−1. These results are then compared with new MRCI+Q/AV6Z calculations. For the first time, transition probabilities are computed for the previously observed 22Πg-A2Πu band system. The 22Πg state (Te = 67,029 cm−1) has a dissociation energy of 24,787 cm−1 at Re = 2.7332 a0. The predicted lifetimes for the 22Πg-A2Πu emissions are of the order of 170 ns. The calculated transition probabilities A(v=0, v=0) for the B2Σu+-X2Σg+ and 22Πg-A2Πu bands are 1.156 × 107 and 1.716 × 103 s−1, respectively. The role of spin–orbit (SO) matrix elements in the spectroscopic data of N2+ is discussed, including results for SO constants as a function of vibrational level of A2Πu state. Our theoretical SO constant A0(A2Πu) = −73.40 cm−1 reproduces well the experimental one (−74.67 cm−1). SO calculations are also used to investigate spin-forbidden transitions on N2+. The obtained <A2Πu|HˆSO|a4Σu+> 30 cm−1. Following a sum-over-states (SOS) methodology, the best estimate for the spin-rotation constant γ0 of the X2Σg+ and B2Σu+ states are 0.0096 and 0.0211 cm−1, respectively, in quantitative agreement with the present experimental data of 0.00917(36) and 0.0206(9).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
21.40%
发文量
94
审稿时长
29 days
期刊介绍: The Journal of Molecular Spectroscopy presents experimental and theoretical articles on all subjects relevant to molecular spectroscopy and its modern applications. An international medium for the publication of some of the most significant research in the field, the Journal of Molecular Spectroscopy is an invaluable resource for astrophysicists, chemists, physicists, engineers, and others involved in molecular spectroscopy research and practice.
期刊最新文献
High resolution laser diode spectroscopy of the hot bands of C2HD in the first overtone region of C-H stretching Buffer-gas cooling of hydrogen cyanide quantified by cavity-ringdown spectroscopy Pure rotational spectroscopic measurements on the electronic ground states of Hafnium monosulfide and Thorium monosulfide in highly excited vibrational states Isotopic species, vibrational states and nuclear quadrupole splitting in CH2Cl2 from rotational spectroscopy at 8–18 GHz Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1