将机器学习与基因组编辑相结合,促进作物改良

IF 4.6 4区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY aBIOTECH Pub Date : 2024-02-29 DOI:10.1007/s42994-023-00133-5
Long Chen, Guanqing Liu, Tao Zhang
{"title":"将机器学习与基因组编辑相结合,促进作物改良","authors":"Long Chen,&nbsp;Guanqing Liu,&nbsp;Tao Zhang","doi":"10.1007/s42994-023-00133-5","DOIUrl":null,"url":null,"abstract":"<div><p>Genome editing is a promising technique that has been broadly utilized for basic gene function studies and trait improvements. Simultaneously, the exponential growth of computational power and big data now promote the application of machine learning for biological research. In this regard, machine learning shows great potential in the refinement of genome editing systems and crop improvement. Here, we review the advances of machine learning to genome editing optimization, with emphasis placed on editing efficiency and specificity enhancement. Additionally, we demonstrate how machine learning bridges genome editing and crop breeding, by accurate key site detection and guide RNA design. Finally, we discuss the current challenges and prospects of these two techniques in crop improvement. By integrating advanced genome editing techniques with machine learning, progress in crop breeding will be further accelerated in the future.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 2","pages":"262 - 277"},"PeriodicalIF":4.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-023-00133-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Integrating machine learning and genome editing for crop improvement\",\"authors\":\"Long Chen,&nbsp;Guanqing Liu,&nbsp;Tao Zhang\",\"doi\":\"10.1007/s42994-023-00133-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Genome editing is a promising technique that has been broadly utilized for basic gene function studies and trait improvements. Simultaneously, the exponential growth of computational power and big data now promote the application of machine learning for biological research. In this regard, machine learning shows great potential in the refinement of genome editing systems and crop improvement. Here, we review the advances of machine learning to genome editing optimization, with emphasis placed on editing efficiency and specificity enhancement. Additionally, we demonstrate how machine learning bridges genome editing and crop breeding, by accurate key site detection and guide RNA design. Finally, we discuss the current challenges and prospects of these two techniques in crop improvement. By integrating advanced genome editing techniques with machine learning, progress in crop breeding will be further accelerated in the future.</p></div>\",\"PeriodicalId\":53135,\"journal\":{\"name\":\"aBIOTECH\",\"volume\":\"5 2\",\"pages\":\"262 - 277\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42994-023-00133-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"aBIOTECH\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42994-023-00133-5\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"aBIOTECH","FirstCategoryId":"1091","ListUrlMain":"https://link.springer.com/article/10.1007/s42994-023-00133-5","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

基因组编辑是一项前景广阔的技术,已被广泛用于基础基因功能研究和性状改良。与此同时,计算能力和大数据的指数级增长促进了机器学习在生物学研究中的应用。在这方面,机器学习在完善基因组编辑系统和作物改良方面显示出巨大潜力。在此,我们回顾了机器学习在基因组编辑优化方面的进展,重点是编辑效率和特异性的提高。此外,我们还展示了机器学习如何通过精确的关键位点检测和导向 RNA 设计,在基因组编辑和作物育种之间架起桥梁。最后,我们讨论了这两种技术在作物改良中目前面临的挑战和前景。通过将先进的基因组编辑技术与机器学习相结合,未来将进一步加快作物育种的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrating machine learning and genome editing for crop improvement

Genome editing is a promising technique that has been broadly utilized for basic gene function studies and trait improvements. Simultaneously, the exponential growth of computational power and big data now promote the application of machine learning for biological research. In this regard, machine learning shows great potential in the refinement of genome editing systems and crop improvement. Here, we review the advances of machine learning to genome editing optimization, with emphasis placed on editing efficiency and specificity enhancement. Additionally, we demonstrate how machine learning bridges genome editing and crop breeding, by accurate key site detection and guide RNA design. Finally, we discuss the current challenges and prospects of these two techniques in crop improvement. By integrating advanced genome editing techniques with machine learning, progress in crop breeding will be further accelerated in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
2.80%
发文量
0
期刊最新文献
Inference and prioritization of tissue-specific regulons in Arabidopsis and Oryza Correction: Characterization of two constitutive promoters RPS28 and EIF1 for studying soybean growth, development, and symbiotic nodule development Simultaneous genetic transformation and genome editing of mixed lines in soybean (Glycine max) and maize (Zea mays) Genome editing in plants using the TnpB transposase system Efficient genome editing in rice with miniature Cas12f variants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1