{"title":"用于豆科作物病害早期检测的机器学习算法","authors":"Ok-Hue Cho","doi":"10.18805/lrf-788","DOIUrl":null,"url":null,"abstract":"Background: Legume crops are an essential component of global agriculture and are widely supplied for human consumption, livestock feed and soil improvement due to their vital nutritional nature. The economic and nutritional significance of legumes is threatened by a multitude of diseases that can cause substantial yield losses. Traditional methods for disease detection, relying on visual inspection, are often subjective and inefficient, leading to delayed intervention. Methods: This study investigates the utilization of machine learning algorithms for the early identification of diseases affecting legume crops. A comprehensive evaluation is conducted on machine learning algorithms, namely Support Vector Machines (SVM) and Convolutional Neural Networks (CNN) with respect to the domain of disease detection. Through a comparative analysis of their performance across different environmental conditions and phases of crop development, this study also explores their strengths and weaknesses. Result: The findings and comparative examination offered significant perspectives on the potential of machine learning algorithms in the realm of early legume crop disease detection. In addition to enhancing crop health and disease management, the research provides support for sustainable agricultural practices and possesses the capacity to augment environmental sustainability and food security through the application of machine learning techniques.","PeriodicalId":17998,"journal":{"name":"LEGUME RESEARCH - AN INTERNATIONAL JOURNAL","volume":"6 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Algorithms for Early Detection of Legume Crop Disease\",\"authors\":\"Ok-Hue Cho\",\"doi\":\"10.18805/lrf-788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Legume crops are an essential component of global agriculture and are widely supplied for human consumption, livestock feed and soil improvement due to their vital nutritional nature. The economic and nutritional significance of legumes is threatened by a multitude of diseases that can cause substantial yield losses. Traditional methods for disease detection, relying on visual inspection, are often subjective and inefficient, leading to delayed intervention. Methods: This study investigates the utilization of machine learning algorithms for the early identification of diseases affecting legume crops. A comprehensive evaluation is conducted on machine learning algorithms, namely Support Vector Machines (SVM) and Convolutional Neural Networks (CNN) with respect to the domain of disease detection. Through a comparative analysis of their performance across different environmental conditions and phases of crop development, this study also explores their strengths and weaknesses. Result: The findings and comparative examination offered significant perspectives on the potential of machine learning algorithms in the realm of early legume crop disease detection. In addition to enhancing crop health and disease management, the research provides support for sustainable agricultural practices and possesses the capacity to augment environmental sustainability and food security through the application of machine learning techniques.\",\"PeriodicalId\":17998,\"journal\":{\"name\":\"LEGUME RESEARCH - AN INTERNATIONAL JOURNAL\",\"volume\":\"6 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"LEGUME RESEARCH - AN INTERNATIONAL JOURNAL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18805/lrf-788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"LEGUME RESEARCH - AN INTERNATIONAL JOURNAL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18805/lrf-788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine Learning Algorithms for Early Detection of Legume Crop Disease
Background: Legume crops are an essential component of global agriculture and are widely supplied for human consumption, livestock feed and soil improvement due to their vital nutritional nature. The economic and nutritional significance of legumes is threatened by a multitude of diseases that can cause substantial yield losses. Traditional methods for disease detection, relying on visual inspection, are often subjective and inefficient, leading to delayed intervention. Methods: This study investigates the utilization of machine learning algorithms for the early identification of diseases affecting legume crops. A comprehensive evaluation is conducted on machine learning algorithms, namely Support Vector Machines (SVM) and Convolutional Neural Networks (CNN) with respect to the domain of disease detection. Through a comparative analysis of their performance across different environmental conditions and phases of crop development, this study also explores their strengths and weaknesses. Result: The findings and comparative examination offered significant perspectives on the potential of machine learning algorithms in the realm of early legume crop disease detection. In addition to enhancing crop health and disease management, the research provides support for sustainable agricultural practices and possesses the capacity to augment environmental sustainability and food security through the application of machine learning techniques.