Husnul Aris Haikal, A. Wigena, Kusman Sadik, Efriwati Efriwati
{"title":"针对 COVID-19 患者数据的判别分析与支持向量机在混合分类和连续自变量上的比较","authors":"Husnul Aris Haikal, A. Wigena, Kusman Sadik, Efriwati Efriwati","doi":"10.15294/sji.v11i1.48565","DOIUrl":null,"url":null,"abstract":"Purpose: Numerous factors can affect the duration of COVID-19 recovery. One method involves utilizing natural herbal medication. This study seeks to determine the variables influencing the duration of COVID-19 recovery and to compare discriminant analysis and support vector machine models using COVID-19 patient data from West Sumatra.Methods: Two data mining methods, Discriminant Analysis and Support Vector Machine with different types of kernels (linear, polynomial, and radial basis function), were employed to categorize the time of COVID-19 recovery in this work. The study utilized 428 data points, with 75% allocated for training data and 25% for testing data. The independent factors were evaluated by determining the selection variables' information value (IV) to gauge their influence on the dependent variable. Data resampling techniques were employed to tackle the problem of data imbalance. This study employs data resampling techniques, including undersampling, oversampling, and SMOTE. The balancing accuracy of Discriminant Analysis and Support Vector Machine was examined.Result: The Discriminant Analysis with SMOTE achieved a balanced accuracy of 66.50%, outperforming the linear kernel Support Vector Machine with SMOTE, which had a balanced accuracy of 63.20% in this dataset.Novelty: This study assessed the novelty, originality, and value by comparing Discriminant Analysis and SVM algorithms with categorical and continuous independent variables. This research explores techniques for managing imbalanced data using undersampling, oversampling, and SMOTE, with variable selection based on information value assessment. ","PeriodicalId":30781,"journal":{"name":"Scientific Journal of Informatics","volume":"109 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Discriminant Analysis and Support Vector Machine on Mixed Categorical and Continuous Independent Variables for COVID-19 Patients Data\",\"authors\":\"Husnul Aris Haikal, A. Wigena, Kusman Sadik, Efriwati Efriwati\",\"doi\":\"10.15294/sji.v11i1.48565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose: Numerous factors can affect the duration of COVID-19 recovery. One method involves utilizing natural herbal medication. This study seeks to determine the variables influencing the duration of COVID-19 recovery and to compare discriminant analysis and support vector machine models using COVID-19 patient data from West Sumatra.Methods: Two data mining methods, Discriminant Analysis and Support Vector Machine with different types of kernels (linear, polynomial, and radial basis function), were employed to categorize the time of COVID-19 recovery in this work. The study utilized 428 data points, with 75% allocated for training data and 25% for testing data. The independent factors were evaluated by determining the selection variables' information value (IV) to gauge their influence on the dependent variable. Data resampling techniques were employed to tackle the problem of data imbalance. This study employs data resampling techniques, including undersampling, oversampling, and SMOTE. The balancing accuracy of Discriminant Analysis and Support Vector Machine was examined.Result: The Discriminant Analysis with SMOTE achieved a balanced accuracy of 66.50%, outperforming the linear kernel Support Vector Machine with SMOTE, which had a balanced accuracy of 63.20% in this dataset.Novelty: This study assessed the novelty, originality, and value by comparing Discriminant Analysis and SVM algorithms with categorical and continuous independent variables. This research explores techniques for managing imbalanced data using undersampling, oversampling, and SMOTE, with variable selection based on information value assessment. \",\"PeriodicalId\":30781,\"journal\":{\"name\":\"Scientific Journal of Informatics\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Journal of Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15294/sji.v11i1.48565\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Journal of Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15294/sji.v11i1.48565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of Discriminant Analysis and Support Vector Machine on Mixed Categorical and Continuous Independent Variables for COVID-19 Patients Data
Purpose: Numerous factors can affect the duration of COVID-19 recovery. One method involves utilizing natural herbal medication. This study seeks to determine the variables influencing the duration of COVID-19 recovery and to compare discriminant analysis and support vector machine models using COVID-19 patient data from West Sumatra.Methods: Two data mining methods, Discriminant Analysis and Support Vector Machine with different types of kernels (linear, polynomial, and radial basis function), were employed to categorize the time of COVID-19 recovery in this work. The study utilized 428 data points, with 75% allocated for training data and 25% for testing data. The independent factors were evaluated by determining the selection variables' information value (IV) to gauge their influence on the dependent variable. Data resampling techniques were employed to tackle the problem of data imbalance. This study employs data resampling techniques, including undersampling, oversampling, and SMOTE. The balancing accuracy of Discriminant Analysis and Support Vector Machine was examined.Result: The Discriminant Analysis with SMOTE achieved a balanced accuracy of 66.50%, outperforming the linear kernel Support Vector Machine with SMOTE, which had a balanced accuracy of 63.20% in this dataset.Novelty: This study assessed the novelty, originality, and value by comparing Discriminant Analysis and SVM algorithms with categorical and continuous independent variables. This research explores techniques for managing imbalanced data using undersampling, oversampling, and SMOTE, with variable selection based on information value assessment.