利用深度学习检测无人机攻击者的法证分析

A. Editya, Neny Kurniati, Mochammad Machlul Alamin, Anggay Luri Pramana, A. Lisdiyanto
{"title":"利用深度学习检测无人机攻击者的法证分析","authors":"A. Editya, Neny Kurniati, Mochammad Machlul Alamin, Anggay Luri Pramana, A. Lisdiyanto","doi":"10.15294/sji.v11i1.48183","DOIUrl":null,"url":null,"abstract":"Purpose: This research proposes deep learning techniques to assist forensic analysis in drone accident cases. This process is focused on detecting attacking drones. In this research, we also compare several deep learning and make some comparisons of the best methods for detecting drone attackers.Methods: The methods applied in this research are YOLO, SSD, and Fast R-CNN. Additionally, to validate the effectiveness of the results, extensive experiments were conducted on the dataset. The dataset we use contains videos taken from drones, especially drone collisions. Evaluation metrics such as Precision, Recall, F1-Score, and mAP are used to assess the system's performance in detecting and classifying drone attackers.Results: This research show performance results in detecting and attributing drone-based threats accurately. In this experiment, it was found that YOLOV5 had superior results compared to YOLOV3 YOLOV4, SSD300, and Fast R-CNN. In this experiment we also detected ten types of objects with an average accuracy value of more than 0.5.Novelty: The proposed system contributes to improving security measures against drone-related incidents, serving as a valuable tool for law enforcement agencies, critical infrastructure protection and public safety. Furthermore, this underscores the growing importance of deep learning in addressing security challenges arising from the widespread use of drones in both civil and commercial contexts. ","PeriodicalId":30781,"journal":{"name":"Scientific Journal of Informatics","volume":"22 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forensic Analysis of Drones Attacker Detection Using Deep Learning\",\"authors\":\"A. Editya, Neny Kurniati, Mochammad Machlul Alamin, Anggay Luri Pramana, A. Lisdiyanto\",\"doi\":\"10.15294/sji.v11i1.48183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose: This research proposes deep learning techniques to assist forensic analysis in drone accident cases. This process is focused on detecting attacking drones. In this research, we also compare several deep learning and make some comparisons of the best methods for detecting drone attackers.Methods: The methods applied in this research are YOLO, SSD, and Fast R-CNN. Additionally, to validate the effectiveness of the results, extensive experiments were conducted on the dataset. The dataset we use contains videos taken from drones, especially drone collisions. Evaluation metrics such as Precision, Recall, F1-Score, and mAP are used to assess the system's performance in detecting and classifying drone attackers.Results: This research show performance results in detecting and attributing drone-based threats accurately. In this experiment, it was found that YOLOV5 had superior results compared to YOLOV3 YOLOV4, SSD300, and Fast R-CNN. In this experiment we also detected ten types of objects with an average accuracy value of more than 0.5.Novelty: The proposed system contributes to improving security measures against drone-related incidents, serving as a valuable tool for law enforcement agencies, critical infrastructure protection and public safety. Furthermore, this underscores the growing importance of deep learning in addressing security challenges arising from the widespread use of drones in both civil and commercial contexts. \",\"PeriodicalId\":30781,\"journal\":{\"name\":\"Scientific Journal of Informatics\",\"volume\":\"22 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Journal of Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15294/sji.v11i1.48183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Journal of Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15294/sji.v11i1.48183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究提出了深度学习技术,以协助无人机事故案件的法医分析。这一过程的重点是检测攻击性无人机。在这项研究中,我们还比较了几种深度学习,并对检测无人机攻击者的最佳方法进行了一些比较:本研究采用的方法有 YOLO、SSD 和快速 R-CNN。此外,为了验证结果的有效性,我们还在数据集上进行了大量实验。我们使用的数据集包含无人机拍摄的视频,尤其是无人机碰撞视频。精确度、召回率、F1-分数和 mAP 等评价指标用于评估系统在检测和分类无人机攻击者方面的性能:本研究展示了在准确检测和归因无人机威胁方面的性能结果。在这项实验中,我们发现 YOLOV5 与 YOLOV3、YOLOV4、SSD300 和 Fast R-CNN 相比具有更优越的性能。新颖性:所提出的系统有助于改进针对无人机相关事件的安全措施,可作为执法机构、关键基础设施保护和公共安全的重要工具。此外,这也凸显了深度学习在应对民用和商用无人机广泛使用所带来的安全挑战方面日益重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forensic Analysis of Drones Attacker Detection Using Deep Learning
Purpose: This research proposes deep learning techniques to assist forensic analysis in drone accident cases. This process is focused on detecting attacking drones. In this research, we also compare several deep learning and make some comparisons of the best methods for detecting drone attackers.Methods: The methods applied in this research are YOLO, SSD, and Fast R-CNN. Additionally, to validate the effectiveness of the results, extensive experiments were conducted on the dataset. The dataset we use contains videos taken from drones, especially drone collisions. Evaluation metrics such as Precision, Recall, F1-Score, and mAP are used to assess the system's performance in detecting and classifying drone attackers.Results: This research show performance results in detecting and attributing drone-based threats accurately. In this experiment, it was found that YOLOV5 had superior results compared to YOLOV3 YOLOV4, SSD300, and Fast R-CNN. In this experiment we also detected ten types of objects with an average accuracy value of more than 0.5.Novelty: The proposed system contributes to improving security measures against drone-related incidents, serving as a valuable tool for law enforcement agencies, critical infrastructure protection and public safety. Furthermore, this underscores the growing importance of deep learning in addressing security challenges arising from the widespread use of drones in both civil and commercial contexts. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
13
审稿时长
24 weeks
期刊最新文献
A Comparative Study of Random Forest and Double Random Forest Models from View Points of Their Interpretability Comparative Analysis of LSTM Neural Network and SVM for USD Exchange Rate Prediction: A Study on Different Training Data Scenarios Knowledge Discovery from Confusion Matrix of Pruned CART in Imbalanced Microarray Data Ovarian Cancer Classification Comparison of Discriminant Analysis and Support Vector Machine on Mixed Categorical and Continuous Independent Variables for COVID-19 Patients Data The Comparison of K-Nearest Neighbors and Random Forest Algorithm to Recognize Indonesian Sign Language in a Real-Time
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1