与海草有关的放线菌抗菌潜力小综述

Galana Siro, Atanas Pipite
{"title":"与海草有关的放线菌抗菌潜力小综述","authors":"Galana Siro, Atanas Pipite","doi":"10.37349/eds.2024.00038","DOIUrl":null,"url":null,"abstract":"The search for novel therapeutic agents to combat the crisis of antimicrobial resistance has spanned from terrestrial to unique, marine environments. Currently, most of the drugs available for usage are derived from microbial metabolites, especially those belonging to the bacterial group, actinobacteria. Actinobacteria are hotspot organisms that exist in all habitats with a myriad of unique biosynthetic metabolites. Seagrasses appear to be a key ecosystem within the coastal environment worth bioprospecting for novel natural products. Unfortunately, literature about the bioactive potential of their associated prokaryotes, including actinobacteria remains limited. In this context, this review focused on actinobacteria with antibiotic-producing capabilities derived from different parts of seagrass plants (i.e. roots, rhizomes, and leaves). To date, there were no purified molecules derived from seagrass-associated actinobacteria that were subjected to structure elucidation. From the underpinning of numerous biological profiles such as antibacterial, antifungal, and algicidal activities of seagrass-derived actinobacteria reported in this review during the period from 2012–2020, it provides a continual growth of knowledge accruing overtime, providing a foundation for future research.","PeriodicalId":72998,"journal":{"name":"Exploration of drug science","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mini-review on the antimicrobial potential of actinobacteria associated with seagrasses\",\"authors\":\"Galana Siro, Atanas Pipite\",\"doi\":\"10.37349/eds.2024.00038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The search for novel therapeutic agents to combat the crisis of antimicrobial resistance has spanned from terrestrial to unique, marine environments. Currently, most of the drugs available for usage are derived from microbial metabolites, especially those belonging to the bacterial group, actinobacteria. Actinobacteria are hotspot organisms that exist in all habitats with a myriad of unique biosynthetic metabolites. Seagrasses appear to be a key ecosystem within the coastal environment worth bioprospecting for novel natural products. Unfortunately, literature about the bioactive potential of their associated prokaryotes, including actinobacteria remains limited. In this context, this review focused on actinobacteria with antibiotic-producing capabilities derived from different parts of seagrass plants (i.e. roots, rhizomes, and leaves). To date, there were no purified molecules derived from seagrass-associated actinobacteria that were subjected to structure elucidation. From the underpinning of numerous biological profiles such as antibacterial, antifungal, and algicidal activities of seagrass-derived actinobacteria reported in this review during the period from 2012–2020, it provides a continual growth of knowledge accruing overtime, providing a foundation for future research.\",\"PeriodicalId\":72998,\"journal\":{\"name\":\"Exploration of drug science\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Exploration of drug science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37349/eds.2024.00038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exploration of drug science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37349/eds.2024.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从陆地环境到独特的海洋环境,人们一直在寻找新型治疗药物来应对抗菌药耐药性危机。目前,大多数可用药物都来自微生物代谢产物,尤其是属于放线菌细菌群的代谢产物。放线菌是存在于所有栖息地的热点生物,具有无数独特的生物合成代谢物。海草似乎是沿海环境中一个重要的生态系统,值得对其进行生物勘探,以获得新型天然产品。遗憾的是,有关与海草相关的原核生物(包括放线菌)的生物活性潜力的文献仍然有限。在这种情况下,本综述侧重于从海草植物的不同部位(即根、根茎和叶)提取的具有抗生素生产能力的放线菌。迄今为止,还没有从海草相关放线菌中提取的纯化分子进行结构阐释。本综述报告了 2012-2020 年间海草衍生放线菌的抗菌、抗真菌和杀藻活性等众多生物学特征,这些特征为知识的不断积累提供了基础,为未来的研究奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mini-review on the antimicrobial potential of actinobacteria associated with seagrasses
The search for novel therapeutic agents to combat the crisis of antimicrobial resistance has spanned from terrestrial to unique, marine environments. Currently, most of the drugs available for usage are derived from microbial metabolites, especially those belonging to the bacterial group, actinobacteria. Actinobacteria are hotspot organisms that exist in all habitats with a myriad of unique biosynthetic metabolites. Seagrasses appear to be a key ecosystem within the coastal environment worth bioprospecting for novel natural products. Unfortunately, literature about the bioactive potential of their associated prokaryotes, including actinobacteria remains limited. In this context, this review focused on actinobacteria with antibiotic-producing capabilities derived from different parts of seagrass plants (i.e. roots, rhizomes, and leaves). To date, there were no purified molecules derived from seagrass-associated actinobacteria that were subjected to structure elucidation. From the underpinning of numerous biological profiles such as antibacterial, antifungal, and algicidal activities of seagrass-derived actinobacteria reported in this review during the period from 2012–2020, it provides a continual growth of knowledge accruing overtime, providing a foundation for future research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced breast cancer cell targeting: RGD integrin ligand potentiates RWQWRWQWR’s cytotoxicity and inhibits migration Plants and fungi metabolites as novel autophagy inducers and senescence inhibitors Pain management for the neurosurgical patient in spinal procedures: overview of historic and new modalities Interaction of norsecurinine-type monomeric and dimeric alkaloids with α-tubulin: a molecular docking study Stryphnodendron adstringens have a modulatory effect on inflammatory cytokines markers of in vitro activated macrophages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1