天然气重整制氢概述

D. Le, Nguyen The Dzung
{"title":"天然气重整制氢概述","authors":"D. Le, Nguyen The Dzung","doi":"10.33271/nvngu/2024-1/092","DOIUrl":null,"url":null,"abstract":"Purpose. To provide an extensive analysis of hydrogen production and the major benefits as well as challenges in the hydrogen production from natural gas. Methodology. The systematic review approach was used in this study. The first stage in a holistic evaluation is to find related significant works and specific concepts, and then apply them to search phrases and syntax. A thorough search is implemented in the Web of Science, Google Scholar, Science Direct, and Scopus databases in the English language. Moreover, the publication time of the papers is also limited in the period from 2010 to September 2023. Findings. The literature review revealed that natural gas reforming is the most prevalent technique for producing hydrogen. The obtained results also showed that the approach based on automatic thermal reforming is less common than the one that uses natural gas to create hydrogen by steam reforming. Additionally, natural gas steam reforming has the most harmful environmental influences with regard to abiotic degradation, potential global warming, and other influence types. Originality. This analysis offers an in-depth overview of how hydrogen is produced from natural gas as well as the benefits and limitations of the reforming method for producing hydrogen. Practical value. From the literature review, it was found that the current preferred method for creating hydrogen is steam natural gas reforming. In addition, this review provides a comprehensive and useful resource for study, scientific advancement, and advancement in the disciplines of creating hydrogen.","PeriodicalId":19101,"journal":{"name":"Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu","volume":"700 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An overview of hydrogen production via reforming from natural gas\",\"authors\":\"D. Le, Nguyen The Dzung\",\"doi\":\"10.33271/nvngu/2024-1/092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose. To provide an extensive analysis of hydrogen production and the major benefits as well as challenges in the hydrogen production from natural gas. Methodology. The systematic review approach was used in this study. The first stage in a holistic evaluation is to find related significant works and specific concepts, and then apply them to search phrases and syntax. A thorough search is implemented in the Web of Science, Google Scholar, Science Direct, and Scopus databases in the English language. Moreover, the publication time of the papers is also limited in the period from 2010 to September 2023. Findings. The literature review revealed that natural gas reforming is the most prevalent technique for producing hydrogen. The obtained results also showed that the approach based on automatic thermal reforming is less common than the one that uses natural gas to create hydrogen by steam reforming. Additionally, natural gas steam reforming has the most harmful environmental influences with regard to abiotic degradation, potential global warming, and other influence types. Originality. This analysis offers an in-depth overview of how hydrogen is produced from natural gas as well as the benefits and limitations of the reforming method for producing hydrogen. Practical value. From the literature review, it was found that the current preferred method for creating hydrogen is steam natural gas reforming. In addition, this review provides a comprehensive and useful resource for study, scientific advancement, and advancement in the disciplines of creating hydrogen.\",\"PeriodicalId\":19101,\"journal\":{\"name\":\"Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu\",\"volume\":\"700 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33271/nvngu/2024-1/092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33271/nvngu/2024-1/092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

目的。广泛分析氢气生产以及利用天然气生产氢气的主要优势和挑战。方法。本研究采用了系统综述法。整体评估的第一阶段是查找相关的重要著作和具体概念,然后将其应用到搜索短语和语法中。在英文版的 Web of Science、Google Scholar、Science Direct 和 Scopus 数据库中进行了全面搜索。此外,论文的发表时间也限定在 2010 年至 2023 年 9 月。研究结果。文献综述显示,天然气重整是最普遍的制氢技术。结果还显示,基于自动热重整的方法不如使用天然气通过蒸汽重整制氢的方法普遍。此外,就非生物退化、潜在的全球变暖和其他影响类型而言,天然气蒸汽转化对环境的有害影响最大。独创性。该分析深入概述了如何利用天然气制氢,以及重整法制氢的优点和局限性。实用价值。通过文献综述发现,目前首选的制氢方法是天然气蒸汽重整。此外,本综述还为制氢学科的研究、科学进步和发展提供了全面、有用的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An overview of hydrogen production via reforming from natural gas
Purpose. To provide an extensive analysis of hydrogen production and the major benefits as well as challenges in the hydrogen production from natural gas. Methodology. The systematic review approach was used in this study. The first stage in a holistic evaluation is to find related significant works and specific concepts, and then apply them to search phrases and syntax. A thorough search is implemented in the Web of Science, Google Scholar, Science Direct, and Scopus databases in the English language. Moreover, the publication time of the papers is also limited in the period from 2010 to September 2023. Findings. The literature review revealed that natural gas reforming is the most prevalent technique for producing hydrogen. The obtained results also showed that the approach based on automatic thermal reforming is less common than the one that uses natural gas to create hydrogen by steam reforming. Additionally, natural gas steam reforming has the most harmful environmental influences with regard to abiotic degradation, potential global warming, and other influence types. Originality. This analysis offers an in-depth overview of how hydrogen is produced from natural gas as well as the benefits and limitations of the reforming method for producing hydrogen. Practical value. From the literature review, it was found that the current preferred method for creating hydrogen is steam natural gas reforming. In addition, this review provides a comprehensive and useful resource for study, scientific advancement, and advancement in the disciplines of creating hydrogen.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
148
期刊最新文献
Influence of ice structure on vitability of frozen sand-water and sand-clay mixtures Scientific bases and peculiarities of conversion of CHPP anthracite boilers to sub-bituminous coal combustion Enhancement of sorption of the azoic dye (Azucryl Red) by natural and calcined hyper-aluminous kaolins Improvement of the methodology for calculating the expected drilling speed with PDC chisels Influence of the rock mass structure and the blasting technique on blast results in the Heliopolis quarry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1