{"title":"使用碳化钍燃料的功率为 300-500 兆瓦的小型模块化长寿压水反应堆的中子设计","authors":"B. P. Lapanporo, Z. Su’ud, A. P. A. Mustari","doi":"10.15587/1729-4061.2024.290996","DOIUrl":null,"url":null,"abstract":"This study presents the neutronic design of a small modular longlife Pressurized Water Reactor (PWR) using thorium carbide fuel with 233U fissile material. The target optimization for this study is a reactor designed to operate for 20 years, with excess reactivity throughout the reactor operational cycle consistently below 1.00 % dk/k. The analysis involves dividing the reactor core into three fuel regions with 233U enrichment levels ranging from 3 % to 8 %, with a 1 % difference for each fuel region. To achieve optimum conditions, 231Pa was randomly added to the fuel. The fuel volume fraction in this design varied from 30 % to 65 %, with a 5 % incremental variation. Power level variations are also studied within the 300–500 MWth with increments of 50 MWth. Calculations were performed using the Standard Reactor Analysis Code (SRAC) program with the PIJ and CITATION modules for cell and core calculations utilizing JENDL4.0 nuclide data. Neutronic calculations indicate that the fuel with a 60 % volume fraction achieves optimum conditions at a power level of 300 MWth. The best performance was observed with a fuel volume fraction of 65 %, reaching optimum conditions across power levels ranging from 300 to 500 MWth. For the fuel with the best performance, the power density distributions for low and high power levels follow the same pattern radially and axially. The power peaking factor (PPF) for all fuel configurations approaching the optimum conditions remains below two, a safe limit for the PWR. Other neutronic safety parameters, such as the Doppler coefficient and void fraction coefficient, also stay within the safe limits for the PWR, with both values remaining negative throughout the reactor operational cycle","PeriodicalId":11433,"journal":{"name":"Eastern-European Journal of Enterprise Technologies","volume":"7 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neutronic design of small modular longlife pressurized water reactor using thorium carbide fuel at a power level of 300–500 MWth\",\"authors\":\"B. P. Lapanporo, Z. Su’ud, A. P. A. Mustari\",\"doi\":\"10.15587/1729-4061.2024.290996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents the neutronic design of a small modular longlife Pressurized Water Reactor (PWR) using thorium carbide fuel with 233U fissile material. The target optimization for this study is a reactor designed to operate for 20 years, with excess reactivity throughout the reactor operational cycle consistently below 1.00 % dk/k. The analysis involves dividing the reactor core into three fuel regions with 233U enrichment levels ranging from 3 % to 8 %, with a 1 % difference for each fuel region. To achieve optimum conditions, 231Pa was randomly added to the fuel. The fuel volume fraction in this design varied from 30 % to 65 %, with a 5 % incremental variation. Power level variations are also studied within the 300–500 MWth with increments of 50 MWth. Calculations were performed using the Standard Reactor Analysis Code (SRAC) program with the PIJ and CITATION modules for cell and core calculations utilizing JENDL4.0 nuclide data. Neutronic calculations indicate that the fuel with a 60 % volume fraction achieves optimum conditions at a power level of 300 MWth. The best performance was observed with a fuel volume fraction of 65 %, reaching optimum conditions across power levels ranging from 300 to 500 MWth. For the fuel with the best performance, the power density distributions for low and high power levels follow the same pattern radially and axially. The power peaking factor (PPF) for all fuel configurations approaching the optimum conditions remains below two, a safe limit for the PWR. Other neutronic safety parameters, such as the Doppler coefficient and void fraction coefficient, also stay within the safe limits for the PWR, with both values remaining negative throughout the reactor operational cycle\",\"PeriodicalId\":11433,\"journal\":{\"name\":\"Eastern-European Journal of Enterprise Technologies\",\"volume\":\"7 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eastern-European Journal of Enterprise Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15587/1729-4061.2024.290996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eastern-European Journal of Enterprise Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15587/1729-4061.2024.290996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Neutronic design of small modular longlife pressurized water reactor using thorium carbide fuel at a power level of 300–500 MWth
This study presents the neutronic design of a small modular longlife Pressurized Water Reactor (PWR) using thorium carbide fuel with 233U fissile material. The target optimization for this study is a reactor designed to operate for 20 years, with excess reactivity throughout the reactor operational cycle consistently below 1.00 % dk/k. The analysis involves dividing the reactor core into three fuel regions with 233U enrichment levels ranging from 3 % to 8 %, with a 1 % difference for each fuel region. To achieve optimum conditions, 231Pa was randomly added to the fuel. The fuel volume fraction in this design varied from 30 % to 65 %, with a 5 % incremental variation. Power level variations are also studied within the 300–500 MWth with increments of 50 MWth. Calculations were performed using the Standard Reactor Analysis Code (SRAC) program with the PIJ and CITATION modules for cell and core calculations utilizing JENDL4.0 nuclide data. Neutronic calculations indicate that the fuel with a 60 % volume fraction achieves optimum conditions at a power level of 300 MWth. The best performance was observed with a fuel volume fraction of 65 %, reaching optimum conditions across power levels ranging from 300 to 500 MWth. For the fuel with the best performance, the power density distributions for low and high power levels follow the same pattern radially and axially. The power peaking factor (PPF) for all fuel configurations approaching the optimum conditions remains below two, a safe limit for the PWR. Other neutronic safety parameters, such as the Doppler coefficient and void fraction coefficient, also stay within the safe limits for the PWR, with both values remaining negative throughout the reactor operational cycle
期刊介绍:
Terminology used in the title of the "East European Journal of Enterprise Technologies" - "enterprise technologies" should be read as "industrial technologies". "Eastern-European Journal of Enterprise Technologies" publishes all those best ideas from the science, which can be introduced in the industry. Since, obtaining the high-quality, competitive industrial products is based on introducing high technologies from various independent spheres of scientific researches, but united by a common end result - a finished high-technology product. Among these scientific spheres, there are engineering, power engineering and energy saving, technologies of inorganic and organic substances and materials science, information technologies and control systems. Publishing scientific papers in these directions are the main development "vectors" of the "Eastern-European Journal of Enterprise Technologies". Since, these are those directions of scientific researches, the results of which can be directly used in modern industrial production: space and aircraft industry, instrument-making industry, mechanical engineering, power engineering, chemical industry and metallurgy.