B. Pospelov, E. Rybka, O. Krainiukov, Vasyl Fedyna, Yuliia Bezuhla, Andrii Melnychenko, Pavlo Borodych, S. Hryshko, Svyatoslav Manzhura, O. Yesipova
{"title":"基于危险参数采样分散的早期点火检测方法","authors":"B. Pospelov, E. Rybka, O. Krainiukov, Vasyl Fedyna, Yuliia Bezuhla, Andrii Melnychenko, Pavlo Borodych, S. Hryshko, Svyatoslav Manzhura, O. Yesipova","doi":"10.15587/1729-4061.2024.299001","DOIUrl":null,"url":null,"abstract":"The object of the study is the selective dispersion of dangerous parameters of the gas environment during material fires. The practical importance of research consists in using the difference of sample dispersions of dangerous parameters of the gas environment on the intervals of absence and presence of ignition of materials for detection of ignition. The theoretical substantiation of the method of detecting fires in premises based on sample dispersions of current measurements of an arbitrary dangerous parameter of the gas environment, corresponding to the general populations of reliable absence and presence of fire, has been carried out. The method, at a given level of significance, determines the unbiased uniformly most powerful fire detection rule. This makes it possible to determine how much differences in sample variances are significant with a given level of significance and are caused by ignition or are random factors. Laboratory experiments were conducted to verify the proposed method. It was established that the influence of ignition on the value of the difference in the sample dispersion at the corresponding intervals of monitoring the carbon monoxide concentration, smoke density, and temperature of the gaseous environment of the laboratory chamber is different and depends on the type of ignition material. At the same time, the minimum difference of the sample dispersions is characteristic for observing the smoke density for all the studied materials. However, early detection of ignition of alcohol, paper, wood, and textiles when observing the smoke density is carried out when the threshold is exceeded by 9.01, 5.31, 2.13 and 2.55 times, respectively. It is shown that the method of early detection of fires, which is based on the detection of significant differences in sample dispersions of data from the relevant general populations","PeriodicalId":11433,"journal":{"name":"Eastern-European Journal of Enterprise Technologies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Method for early ignition detection based on the sampling dispersion of dangerous parameter\",\"authors\":\"B. Pospelov, E. Rybka, O. Krainiukov, Vasyl Fedyna, Yuliia Bezuhla, Andrii Melnychenko, Pavlo Borodych, S. Hryshko, Svyatoslav Manzhura, O. Yesipova\",\"doi\":\"10.15587/1729-4061.2024.299001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The object of the study is the selective dispersion of dangerous parameters of the gas environment during material fires. The practical importance of research consists in using the difference of sample dispersions of dangerous parameters of the gas environment on the intervals of absence and presence of ignition of materials for detection of ignition. The theoretical substantiation of the method of detecting fires in premises based on sample dispersions of current measurements of an arbitrary dangerous parameter of the gas environment, corresponding to the general populations of reliable absence and presence of fire, has been carried out. The method, at a given level of significance, determines the unbiased uniformly most powerful fire detection rule. This makes it possible to determine how much differences in sample variances are significant with a given level of significance and are caused by ignition or are random factors. Laboratory experiments were conducted to verify the proposed method. It was established that the influence of ignition on the value of the difference in the sample dispersion at the corresponding intervals of monitoring the carbon monoxide concentration, smoke density, and temperature of the gaseous environment of the laboratory chamber is different and depends on the type of ignition material. At the same time, the minimum difference of the sample dispersions is characteristic for observing the smoke density for all the studied materials. However, early detection of ignition of alcohol, paper, wood, and textiles when observing the smoke density is carried out when the threshold is exceeded by 9.01, 5.31, 2.13 and 2.55 times, respectively. It is shown that the method of early detection of fires, which is based on the detection of significant differences in sample dispersions of data from the relevant general populations\",\"PeriodicalId\":11433,\"journal\":{\"name\":\"Eastern-European Journal of Enterprise Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eastern-European Journal of Enterprise Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15587/1729-4061.2024.299001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eastern-European Journal of Enterprise Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15587/1729-4061.2024.299001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Method for early ignition detection based on the sampling dispersion of dangerous parameter
The object of the study is the selective dispersion of dangerous parameters of the gas environment during material fires. The practical importance of research consists in using the difference of sample dispersions of dangerous parameters of the gas environment on the intervals of absence and presence of ignition of materials for detection of ignition. The theoretical substantiation of the method of detecting fires in premises based on sample dispersions of current measurements of an arbitrary dangerous parameter of the gas environment, corresponding to the general populations of reliable absence and presence of fire, has been carried out. The method, at a given level of significance, determines the unbiased uniformly most powerful fire detection rule. This makes it possible to determine how much differences in sample variances are significant with a given level of significance and are caused by ignition or are random factors. Laboratory experiments were conducted to verify the proposed method. It was established that the influence of ignition on the value of the difference in the sample dispersion at the corresponding intervals of monitoring the carbon monoxide concentration, smoke density, and temperature of the gaseous environment of the laboratory chamber is different and depends on the type of ignition material. At the same time, the minimum difference of the sample dispersions is characteristic for observing the smoke density for all the studied materials. However, early detection of ignition of alcohol, paper, wood, and textiles when observing the smoke density is carried out when the threshold is exceeded by 9.01, 5.31, 2.13 and 2.55 times, respectively. It is shown that the method of early detection of fires, which is based on the detection of significant differences in sample dispersions of data from the relevant general populations
期刊介绍:
Terminology used in the title of the "East European Journal of Enterprise Technologies" - "enterprise technologies" should be read as "industrial technologies". "Eastern-European Journal of Enterprise Technologies" publishes all those best ideas from the science, which can be introduced in the industry. Since, obtaining the high-quality, competitive industrial products is based on introducing high technologies from various independent spheres of scientific researches, but united by a common end result - a finished high-technology product. Among these scientific spheres, there are engineering, power engineering and energy saving, technologies of inorganic and organic substances and materials science, information technologies and control systems. Publishing scientific papers in these directions are the main development "vectors" of the "Eastern-European Journal of Enterprise Technologies". Since, these are those directions of scientific researches, the results of which can be directly used in modern industrial production: space and aircraft industry, instrument-making industry, mechanical engineering, power engineering, chemical industry and metallurgy.