M. Goldbeck, V. Piroli, J. S. Weber, C. D. Boeira, B. L. Perotti, N. K. Fukumasu, Fernando Alvarez, C. A. Figueroa, A. F. Michels
{"title":"偏置电压对使用四甲基硅烷的 a-SiCx:H 层间沉积的影响:a-C:H 薄膜在钢铁上的装饰应用","authors":"M. Goldbeck, V. Piroli, J. S. Weber, C. D. Boeira, B. L. Perotti, N. K. Fukumasu, Fernando Alvarez, C. A. Figueroa, A. F. Michels","doi":"10.1116/6.0003328","DOIUrl":null,"url":null,"abstract":"Hydrogenated amorphous carbon (a-C:H) is a type of coating vastly applied on steel alloys due to its low friction coefficient, high hardness, and chemical inertness. Also, its characteristic brilliant black color like onyx stone is desirable for decorative applications. Despite the beneficial properties conferred to ferrous substrates, the adhesion of a-C:H films is weakened by its residual stress. In order to improve the adhesion of a-C:H films/steel alloy structures, one adopted strategy is the addition of an interlayer. This research investigated the influence of the bias voltage applied on the deposition of hydrogenated amorphous silicon carbide (a-SiCx:H) interlayers, with tetramethylsilane (TMS) as the precursor, to promote adhesion in a-C:H/a-SiCx:H/ferrous alloy structures for decorative applications. The thicker interlayer was achieved at −600 V. Two regimes were proposed to explain this behavior considering ionization rates and resputtering rates and chemical reactions in plasma. The chemical structure in different regions of the a-SiCx:H interlayer was analyzed in detail. An increase in the applied bias voltage leads to oxygen incorporation at the a-C:H/a-SiCx:H interface. Higher bias voltages result in lower silicon content at the a-SiCx:H/steel interface, which is correlated to the −800 V sample’s poor adhesion. Finally, we have included a discussion about a new range of loads when a decorative piece is held by the hand where the critical loads for delamination of a-C:H coatings measured here are good enough for decorative applications.","PeriodicalId":170900,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"22 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bias voltage influence on the a-SiCx:H interlayer deposition using tetramethylsilane: Decorative applications of a-C:H thin films on steel\",\"authors\":\"M. Goldbeck, V. Piroli, J. S. Weber, C. D. Boeira, B. L. Perotti, N. K. Fukumasu, Fernando Alvarez, C. A. Figueroa, A. F. Michels\",\"doi\":\"10.1116/6.0003328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrogenated amorphous carbon (a-C:H) is a type of coating vastly applied on steel alloys due to its low friction coefficient, high hardness, and chemical inertness. Also, its characteristic brilliant black color like onyx stone is desirable for decorative applications. Despite the beneficial properties conferred to ferrous substrates, the adhesion of a-C:H films is weakened by its residual stress. In order to improve the adhesion of a-C:H films/steel alloy structures, one adopted strategy is the addition of an interlayer. This research investigated the influence of the bias voltage applied on the deposition of hydrogenated amorphous silicon carbide (a-SiCx:H) interlayers, with tetramethylsilane (TMS) as the precursor, to promote adhesion in a-C:H/a-SiCx:H/ferrous alloy structures for decorative applications. The thicker interlayer was achieved at −600 V. Two regimes were proposed to explain this behavior considering ionization rates and resputtering rates and chemical reactions in plasma. The chemical structure in different regions of the a-SiCx:H interlayer was analyzed in detail. An increase in the applied bias voltage leads to oxygen incorporation at the a-C:H/a-SiCx:H interface. Higher bias voltages result in lower silicon content at the a-SiCx:H/steel interface, which is correlated to the −800 V sample’s poor adhesion. Finally, we have included a discussion about a new range of loads when a decorative piece is held by the hand where the critical loads for delamination of a-C:H coatings measured here are good enough for decorative applications.\",\"PeriodicalId\":170900,\"journal\":{\"name\":\"Journal of Vacuum Science & Technology A\",\"volume\":\"22 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vacuum Science & Technology A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0003328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0003328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bias voltage influence on the a-SiCx:H interlayer deposition using tetramethylsilane: Decorative applications of a-C:H thin films on steel
Hydrogenated amorphous carbon (a-C:H) is a type of coating vastly applied on steel alloys due to its low friction coefficient, high hardness, and chemical inertness. Also, its characteristic brilliant black color like onyx stone is desirable for decorative applications. Despite the beneficial properties conferred to ferrous substrates, the adhesion of a-C:H films is weakened by its residual stress. In order to improve the adhesion of a-C:H films/steel alloy structures, one adopted strategy is the addition of an interlayer. This research investigated the influence of the bias voltage applied on the deposition of hydrogenated amorphous silicon carbide (a-SiCx:H) interlayers, with tetramethylsilane (TMS) as the precursor, to promote adhesion in a-C:H/a-SiCx:H/ferrous alloy structures for decorative applications. The thicker interlayer was achieved at −600 V. Two regimes were proposed to explain this behavior considering ionization rates and resputtering rates and chemical reactions in plasma. The chemical structure in different regions of the a-SiCx:H interlayer was analyzed in detail. An increase in the applied bias voltage leads to oxygen incorporation at the a-C:H/a-SiCx:H interface. Higher bias voltages result in lower silicon content at the a-SiCx:H/steel interface, which is correlated to the −800 V sample’s poor adhesion. Finally, we have included a discussion about a new range of loads when a decorative piece is held by the hand where the critical loads for delamination of a-C:H coatings measured here are good enough for decorative applications.