Lucas F. F. Albuquerque, Maria Victoria Souto, Felipe Saldanha-Araujo, J. L. Carvalho, Taís Gratieri, Marcilio Cunha-Filho, G. Gelfuso
{"title":"人和猪皮肤中伊布替尼色谱检测方法的开发与验证","authors":"Lucas F. F. Albuquerque, Maria Victoria Souto, Felipe Saldanha-Araujo, J. L. Carvalho, Taís Gratieri, Marcilio Cunha-Filho, G. Gelfuso","doi":"10.3390/chemistry6020014","DOIUrl":null,"url":null,"abstract":"Ibrutinib (IBR) is a tyrosine kinase inhibitor investigated for treating solid and non-solid tumors. Considering the advantages that a topical application of IBR could generate in terms of dose reduction and side effects in skin cancer treatment, this paper presents a simple and selective HPLC method for determining IBR concentration in in vitro skin permeation studies to support the development of topical formulations. The method uses a reversed-phase C18 column and a mobile phase composed of acetonitrile and 0.01 mol/L phosphoric acid at pH 3.5 (35:65 v/v), flowing at 1.0 mL/min. The oven temperature was set at 35 °C, the injection volume was 20 μL, and UV drug detection was performed at 259 nm. The validation procedure certified that this method was selective for IBR determination even when extracted from human or porcine skin matrices. The method was linear over a range of 0.2 to 15.0 μg/mL, precise, robust, and accurate, with recovery rates from the skin layers higher than 89.5 ± 5.9% for the porcine skin and higher than 92.0 ± 0.2% for the human skin. The limits of detection and quantification were 0.01 and 0.02 μg/mL, respectively. The method showed, therefore, to be adequate for use in further skin permeation studies employing IBR topical formulations.","PeriodicalId":9850,"journal":{"name":"Chemistry","volume":"6 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and Validation of a Chromatographic Method for Ibrutinib Determination in Human and Porcine Skin\",\"authors\":\"Lucas F. F. Albuquerque, Maria Victoria Souto, Felipe Saldanha-Araujo, J. L. Carvalho, Taís Gratieri, Marcilio Cunha-Filho, G. Gelfuso\",\"doi\":\"10.3390/chemistry6020014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ibrutinib (IBR) is a tyrosine kinase inhibitor investigated for treating solid and non-solid tumors. Considering the advantages that a topical application of IBR could generate in terms of dose reduction and side effects in skin cancer treatment, this paper presents a simple and selective HPLC method for determining IBR concentration in in vitro skin permeation studies to support the development of topical formulations. The method uses a reversed-phase C18 column and a mobile phase composed of acetonitrile and 0.01 mol/L phosphoric acid at pH 3.5 (35:65 v/v), flowing at 1.0 mL/min. The oven temperature was set at 35 °C, the injection volume was 20 μL, and UV drug detection was performed at 259 nm. The validation procedure certified that this method was selective for IBR determination even when extracted from human or porcine skin matrices. The method was linear over a range of 0.2 to 15.0 μg/mL, precise, robust, and accurate, with recovery rates from the skin layers higher than 89.5 ± 5.9% for the porcine skin and higher than 92.0 ± 0.2% for the human skin. The limits of detection and quantification were 0.01 and 0.02 μg/mL, respectively. The method showed, therefore, to be adequate for use in further skin permeation studies employing IBR topical formulations.\",\"PeriodicalId\":9850,\"journal\":{\"name\":\"Chemistry\",\"volume\":\"6 20\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.3390/chemistry6020014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.3390/chemistry6020014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
Development and Validation of a Chromatographic Method for Ibrutinib Determination in Human and Porcine Skin
Ibrutinib (IBR) is a tyrosine kinase inhibitor investigated for treating solid and non-solid tumors. Considering the advantages that a topical application of IBR could generate in terms of dose reduction and side effects in skin cancer treatment, this paper presents a simple and selective HPLC method for determining IBR concentration in in vitro skin permeation studies to support the development of topical formulations. The method uses a reversed-phase C18 column and a mobile phase composed of acetonitrile and 0.01 mol/L phosphoric acid at pH 3.5 (35:65 v/v), flowing at 1.0 mL/min. The oven temperature was set at 35 °C, the injection volume was 20 μL, and UV drug detection was performed at 259 nm. The validation procedure certified that this method was selective for IBR determination even when extracted from human or porcine skin matrices. The method was linear over a range of 0.2 to 15.0 μg/mL, precise, robust, and accurate, with recovery rates from the skin layers higher than 89.5 ± 5.9% for the porcine skin and higher than 92.0 ± 0.2% for the human skin. The limits of detection and quantification were 0.01 and 0.02 μg/mL, respectively. The method showed, therefore, to be adequate for use in further skin permeation studies employing IBR topical formulations.
期刊介绍:
Chemistry—A European Journal is a truly international journal with top quality contributions (2017 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.