多相流应用中微气泡的可视化与评估

Fluids Pub Date : 2024-02-27 DOI:10.3390/fluids9030058
Safa A. Najim, Deepak Meerakaviyad, K. Pun, Paul Russell, P. Ganesan, D. Hughes, Faik A. Hamad
{"title":"多相流应用中微气泡的可视化与评估","authors":"Safa A. Najim, Deepak Meerakaviyad, K. Pun, Paul Russell, P. Ganesan, D. Hughes, Faik A. Hamad","doi":"10.3390/fluids9030058","DOIUrl":null,"url":null,"abstract":"Accurate visualization of bubbles in multiphase flow is a crucial aspect of modeling heat transfer, mixing, and turbulence processes. It has many applications, including chemical processes, wastewater treatment, and aquaculture. A new software, Flow_Vis, based on experimental data visualization, has been developed to visualize the movement and size distribution of bubbles within multiphase flow. Images and videos recorded from an experimental rig designed to generate microbubbles were analyzed using the new software. The bubbles in the fluid were examined and found to move with different velocities due to their varying sizes. The software was used to measure bubble size distributions, and the obtained results were compared with experimental measurements, showing reasonable accuracy. The velocity measurements were also compared with literature values and found to be equally accurate.","PeriodicalId":510749,"journal":{"name":"Fluids","volume":"34 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualizing and Evaluating Microbubbles in Multiphase Flow Applications\",\"authors\":\"Safa A. Najim, Deepak Meerakaviyad, K. Pun, Paul Russell, P. Ganesan, D. Hughes, Faik A. Hamad\",\"doi\":\"10.3390/fluids9030058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate visualization of bubbles in multiphase flow is a crucial aspect of modeling heat transfer, mixing, and turbulence processes. It has many applications, including chemical processes, wastewater treatment, and aquaculture. A new software, Flow_Vis, based on experimental data visualization, has been developed to visualize the movement and size distribution of bubbles within multiphase flow. Images and videos recorded from an experimental rig designed to generate microbubbles were analyzed using the new software. The bubbles in the fluid were examined and found to move with different velocities due to their varying sizes. The software was used to measure bubble size distributions, and the obtained results were compared with experimental measurements, showing reasonable accuracy. The velocity measurements were also compared with literature values and found to be equally accurate.\",\"PeriodicalId\":510749,\"journal\":{\"name\":\"Fluids\",\"volume\":\"34 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fluids9030058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fluids9030058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多相流中气泡的精确可视化是传热、混合和湍流过程建模的一个重要方面。它有许多应用,包括化学过程、废水处理和水产养殖。基于实验数据可视化技术开发的新软件 Flow_Vis,可对多相流中气泡的运动和大小分布进行可视化。使用新软件分析了从旨在产生微气泡的实验装置上录制的图像和视频。在对流体中的气泡进行检查后发现,由于气泡大小不一,其运动速度也各不相同。该软件用于测量气泡的大小分布,所获得的结果与实验测量结果进行了比较,显示出合理的准确性。速度测量结果也与文献值进行了比较,发现同样准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visualizing and Evaluating Microbubbles in Multiphase Flow Applications
Accurate visualization of bubbles in multiphase flow is a crucial aspect of modeling heat transfer, mixing, and turbulence processes. It has many applications, including chemical processes, wastewater treatment, and aquaculture. A new software, Flow_Vis, based on experimental data visualization, has been developed to visualize the movement and size distribution of bubbles within multiphase flow. Images and videos recorded from an experimental rig designed to generate microbubbles were analyzed using the new software. The bubbles in the fluid were examined and found to move with different velocities due to their varying sizes. The software was used to measure bubble size distributions, and the obtained results were compared with experimental measurements, showing reasonable accuracy. The velocity measurements were also compared with literature values and found to be equally accurate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integrated Aerodynamic Shape and Aero-Structural Optimization: Applications from Ahmed Body to NACA 0012 Airfoil and Wind Turbine Blades Flowfield and Noise Dynamics of Supersonic Rectangular Impinging Jets: Major versus Minor Axis Orientations Rim Driven Thruster as Innovative Propulsion Element for Dual Phase Flows in Plug Flow Reactors Investigation of Convective Heat Transfer and Stability on a Rotating Disk: A Novel Experimental Method and Thermal Modeling Visualization and Quantification of Facemask Leakage Flows and Interpersonal Transmission with Varying Face Coverings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1