利用深度学习和混合方法对脑肿瘤 MRI 图像进行分类和分割

Sugandha Singh, Vipin Saxena
{"title":"利用深度学习和混合方法对脑肿瘤 MRI 图像进行分类和分割","authors":"Sugandha Singh, Vipin Saxena","doi":"10.32985/ijeces.15.2.5","DOIUrl":null,"url":null,"abstract":"Manual prediction of brain tumors is a time-consuming and subjective task, reliant on radiologists' expertise, leading to potential inaccuracies. In response, this study proposes an automated solution utilizing a Convolutional Neural Network (CNN) for brain tumor classification, achieving an impressive accuracy of 98.89%. Following classification, a hybrid approach, integrating graph-based and threshold segmentation techniques, accurately locates the tumor region in magnetic resonance (MR) brain images across sagittal, coronal, and axial views. Comparative analysis with existing research papers validates the effectiveness of the proposed method, and similarity coefficients, including a Bfscore of 1 and a Jaccard similarity of 93.86%, attest to the high concordance between segmented images and ground truth.","PeriodicalId":507791,"journal":{"name":"International journal of electrical and computer engineering systems","volume":"57 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification and Segmentation of MRI Images of Brain Tumors Using Deep Learning and Hybrid Approach\",\"authors\":\"Sugandha Singh, Vipin Saxena\",\"doi\":\"10.32985/ijeces.15.2.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manual prediction of brain tumors is a time-consuming and subjective task, reliant on radiologists' expertise, leading to potential inaccuracies. In response, this study proposes an automated solution utilizing a Convolutional Neural Network (CNN) for brain tumor classification, achieving an impressive accuracy of 98.89%. Following classification, a hybrid approach, integrating graph-based and threshold segmentation techniques, accurately locates the tumor region in magnetic resonance (MR) brain images across sagittal, coronal, and axial views. Comparative analysis with existing research papers validates the effectiveness of the proposed method, and similarity coefficients, including a Bfscore of 1 and a Jaccard similarity of 93.86%, attest to the high concordance between segmented images and ground truth.\",\"PeriodicalId\":507791,\"journal\":{\"name\":\"International journal of electrical and computer engineering systems\",\"volume\":\"57 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of electrical and computer engineering systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32985/ijeces.15.2.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of electrical and computer engineering systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.15.2.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工预测脑肿瘤是一项耗时且主观的任务,依赖于放射科医生的专业知识,可能导致误差。为此,本研究提出了一种自动解决方案,利用卷积神经网络(CNN)进行脑肿瘤分类,准确率高达 98.89%。在分类之后,一种融合了基于图和阈值的分割技术的混合方法在矢状、冠状和轴向视图的磁共振(MR)脑图像中准确定位了肿瘤区域。与现有研究论文的对比分析验证了所提方法的有效性,包括 Bfscore 1 和 Jaccard 相似度 93.86% 在内的相似系数证明了分割图像与地面实况之间的高度一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification and Segmentation of MRI Images of Brain Tumors Using Deep Learning and Hybrid Approach
Manual prediction of brain tumors is a time-consuming and subjective task, reliant on radiologists' expertise, leading to potential inaccuracies. In response, this study proposes an automated solution utilizing a Convolutional Neural Network (CNN) for brain tumor classification, achieving an impressive accuracy of 98.89%. Following classification, a hybrid approach, integrating graph-based and threshold segmentation techniques, accurately locates the tumor region in magnetic resonance (MR) brain images across sagittal, coronal, and axial views. Comparative analysis with existing research papers validates the effectiveness of the proposed method, and similarity coefficients, including a Bfscore of 1 and a Jaccard similarity of 93.86%, attest to the high concordance between segmented images and ground truth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gray Level Co-occurrence Matrix based Fully Convolutional Neural Network Model for Pneumonia Detection DHM-OCR Comparative Analysis of Banana Detection Models Design of Regenerative Braking System and Energy Storage with Supercapacitors as Energy Buffers Data-driven Gait based Severity Classification for Parkinson's Disease using Duo Spatiotemporal Convoluted Kernel Boosted ResNet model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1