Micro-FL:基于容错可扩展微服务的联合学习平台

Future Internet Pub Date : 2024-02-22 DOI:10.3390/fi16030070
Mikael Sabuhi, Petr Musilek, C. Bezemer
{"title":"Micro-FL:基于容错可扩展微服务的联合学习平台","authors":"Mikael Sabuhi, Petr Musilek, C. Bezemer","doi":"10.3390/fi16030070","DOIUrl":null,"url":null,"abstract":"As the number of machine learning applications increases, growing concerns about data privacy expose the limitations of traditional cloud-based machine learning methods that rely on centralized data collection and processing. Federated learning emerges as a promising alternative, offering a novel approach to training machine learning models that safeguards data privacy. Federated learning facilitates collaborative model training across various entities. In this approach, each user trains models locally and shares only the local model parameters with a central server, which then generates a global model based on these individual updates. This approach ensures data privacy since the training data itself is never directly shared with a central entity. However, existing federated machine learning frameworks are not without challenges. In terms of server design, these frameworks exhibit limited scalability with an increasing number of clients and are highly vulnerable to system faults, particularly as the central server becomes a single point of failure. This paper introduces Micro-FL, a federated learning framework that uses a microservices architecture to implement the federated learning system. It demonstrates that the framework is fault-tolerant and scalable, showing its ability to handle an increasing number of clients. A comprehensive performance evaluation confirms that Micro-FL proficiently handles component faults, enabling a smooth and uninterrupted operation.","PeriodicalId":509567,"journal":{"name":"Future Internet","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Micro-FL: A Fault-Tolerant Scalable Microservice-Based Platform for Federated Learning\",\"authors\":\"Mikael Sabuhi, Petr Musilek, C. Bezemer\",\"doi\":\"10.3390/fi16030070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the number of machine learning applications increases, growing concerns about data privacy expose the limitations of traditional cloud-based machine learning methods that rely on centralized data collection and processing. Federated learning emerges as a promising alternative, offering a novel approach to training machine learning models that safeguards data privacy. Federated learning facilitates collaborative model training across various entities. In this approach, each user trains models locally and shares only the local model parameters with a central server, which then generates a global model based on these individual updates. This approach ensures data privacy since the training data itself is never directly shared with a central entity. However, existing federated machine learning frameworks are not without challenges. In terms of server design, these frameworks exhibit limited scalability with an increasing number of clients and are highly vulnerable to system faults, particularly as the central server becomes a single point of failure. This paper introduces Micro-FL, a federated learning framework that uses a microservices architecture to implement the federated learning system. It demonstrates that the framework is fault-tolerant and scalable, showing its ability to handle an increasing number of clients. A comprehensive performance evaluation confirms that Micro-FL proficiently handles component faults, enabling a smooth and uninterrupted operation.\",\"PeriodicalId\":509567,\"journal\":{\"name\":\"Future Internet\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fi16030070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi16030070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着机器学习应用数量的增加,人们对数据隐私日益关注,这暴露了依赖集中式数据收集和处理的传统云机器学习方法的局限性。联合学习是一种很有前途的替代方法,它为训练机器学习模型提供了一种保护数据隐私的新方法。联合学习有利于在不同实体间进行协作模型训练。在这种方法中,每个用户都在本地训练模型,只与中央服务器共享本地模型参数,然后中央服务器根据这些单个更新生成全局模型。这种方法可以确保数据隐私,因为训练数据本身不会直接与中央实体共享。然而,现有的联合机器学习框架并非没有挑战。在服务器设计方面,随着客户端数量的增加,这些框架表现出有限的可扩展性,而且极易受到系统故障的影响,特别是当中央服务器成为单点故障时。本文介绍了联合学习框架 Micro-FL,它使用微服务架构来实现联合学习系统。它证明了该框架的容错性和可扩展性,展示了其处理不断增加的客户端数量的能力。一项全面的性能评估证实,Micro-FL 能熟练处理组件故障,从而实现平稳、不间断的运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Micro-FL: A Fault-Tolerant Scalable Microservice-Based Platform for Federated Learning
As the number of machine learning applications increases, growing concerns about data privacy expose the limitations of traditional cloud-based machine learning methods that rely on centralized data collection and processing. Federated learning emerges as a promising alternative, offering a novel approach to training machine learning models that safeguards data privacy. Federated learning facilitates collaborative model training across various entities. In this approach, each user trains models locally and shares only the local model parameters with a central server, which then generates a global model based on these individual updates. This approach ensures data privacy since the training data itself is never directly shared with a central entity. However, existing federated machine learning frameworks are not without challenges. In terms of server design, these frameworks exhibit limited scalability with an increasing number of clients and are highly vulnerable to system faults, particularly as the central server becomes a single point of failure. This paper introduces Micro-FL, a federated learning framework that uses a microservices architecture to implement the federated learning system. It demonstrates that the framework is fault-tolerant and scalable, showing its ability to handle an increasing number of clients. A comprehensive performance evaluation confirms that Micro-FL proficiently handles component faults, enabling a smooth and uninterrupted operation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Achieving Accountability and Data Integrity in Message Queuing Telemetry Transport Using Blockchain and Interplanetary File System Watch the Skies: A Study on Drone Attack Vectors, Forensic Approaches, and Persisting Security Challenges Multi-Agent Dynamic Fog Service Placement Approach The Use of Virtual Reality in the Countries of the Central American Bank for Economic Integration (CABEI) Emotion Recognition from Videos Using Multimodal Large Language Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1