{"title":"非静水压力下的流体-矿物质平衡:分子动力学的启示","authors":"M. Mazzucchelli, E. Moulas, B. Kaus, Thomas Speck","doi":"10.2475/001c.92881","DOIUrl":null,"url":null,"abstract":"The interpretation of phase equilibria and reactions in geological materials is based on standard thermodynamics that assumes hydrostatic and homogeneous stress conditions. However, rocks and minerals in the lithosphere can support stress gradients and nonhydrostatic stresses. Currently, there is still not an accepted macroscopic thermodynamic theory to include the effect of nonhydrostatic stress on mineral reactions, and the use of several thermodynamic potentials in stressed geological system remains under debate. In experiments under nonhydrostatic stress, it is often difficult to resolve the direct effect of differential stress on phase equilibria because pressure gradients may be developed. Such gradients can affect the metamorphic equilibria at the local scale. Here, we investigate the direct effect of a homogeneous, nonhydrostatic stress field on the solid-fluid equilibrium using molecular dynamics simulations at non-zero pressure and elevated temperature conditions. Our results show that, for simple single-component systems at constant temperature, the equilibrium fluid pressure of a stressed system is always larger than the value of fluid pressure at hydrostatic stress conditions. The displacement of the equilibrium value of the fluid pressure is about an order of magnitude smaller compared to the level of differential stress in the solid crystal. Thus, phase equilibria can be accurately predicted by taking the fluid pressure as a proxy of the equilibration pressure. On the contrary, the mean stress of the solid can deviate substantially from the pressure of the fluid in stressed systems at thermodynamic equilibrium. This has implications on the use of thermodynamic pressure in geodynamic models since the fluid pressure is a more accurate proxy for predicting the location of metamorphic reactions, while the equilibrium density of the solid has to be determined from its mean stress.","PeriodicalId":7660,"journal":{"name":"American Journal of Science","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluid-mineral Equilibrium Under Nonhydrostatic Stress: Insight From Molecular Dynamics\",\"authors\":\"M. Mazzucchelli, E. Moulas, B. Kaus, Thomas Speck\",\"doi\":\"10.2475/001c.92881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The interpretation of phase equilibria and reactions in geological materials is based on standard thermodynamics that assumes hydrostatic and homogeneous stress conditions. However, rocks and minerals in the lithosphere can support stress gradients and nonhydrostatic stresses. Currently, there is still not an accepted macroscopic thermodynamic theory to include the effect of nonhydrostatic stress on mineral reactions, and the use of several thermodynamic potentials in stressed geological system remains under debate. In experiments under nonhydrostatic stress, it is often difficult to resolve the direct effect of differential stress on phase equilibria because pressure gradients may be developed. Such gradients can affect the metamorphic equilibria at the local scale. Here, we investigate the direct effect of a homogeneous, nonhydrostatic stress field on the solid-fluid equilibrium using molecular dynamics simulations at non-zero pressure and elevated temperature conditions. Our results show that, for simple single-component systems at constant temperature, the equilibrium fluid pressure of a stressed system is always larger than the value of fluid pressure at hydrostatic stress conditions. The displacement of the equilibrium value of the fluid pressure is about an order of magnitude smaller compared to the level of differential stress in the solid crystal. Thus, phase equilibria can be accurately predicted by taking the fluid pressure as a proxy of the equilibration pressure. On the contrary, the mean stress of the solid can deviate substantially from the pressure of the fluid in stressed systems at thermodynamic equilibrium. This has implications on the use of thermodynamic pressure in geodynamic models since the fluid pressure is a more accurate proxy for predicting the location of metamorphic reactions, while the equilibrium density of the solid has to be determined from its mean stress.\",\"PeriodicalId\":7660,\"journal\":{\"name\":\"American Journal of Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2475/001c.92881\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2475/001c.92881","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Fluid-mineral Equilibrium Under Nonhydrostatic Stress: Insight From Molecular Dynamics
The interpretation of phase equilibria and reactions in geological materials is based on standard thermodynamics that assumes hydrostatic and homogeneous stress conditions. However, rocks and minerals in the lithosphere can support stress gradients and nonhydrostatic stresses. Currently, there is still not an accepted macroscopic thermodynamic theory to include the effect of nonhydrostatic stress on mineral reactions, and the use of several thermodynamic potentials in stressed geological system remains under debate. In experiments under nonhydrostatic stress, it is often difficult to resolve the direct effect of differential stress on phase equilibria because pressure gradients may be developed. Such gradients can affect the metamorphic equilibria at the local scale. Here, we investigate the direct effect of a homogeneous, nonhydrostatic stress field on the solid-fluid equilibrium using molecular dynamics simulations at non-zero pressure and elevated temperature conditions. Our results show that, for simple single-component systems at constant temperature, the equilibrium fluid pressure of a stressed system is always larger than the value of fluid pressure at hydrostatic stress conditions. The displacement of the equilibrium value of the fluid pressure is about an order of magnitude smaller compared to the level of differential stress in the solid crystal. Thus, phase equilibria can be accurately predicted by taking the fluid pressure as a proxy of the equilibration pressure. On the contrary, the mean stress of the solid can deviate substantially from the pressure of the fluid in stressed systems at thermodynamic equilibrium. This has implications on the use of thermodynamic pressure in geodynamic models since the fluid pressure is a more accurate proxy for predicting the location of metamorphic reactions, while the equilibrium density of the solid has to be determined from its mean stress.
期刊介绍:
The American Journal of Science (AJS), founded in 1818 by Benjamin Silliman, is the oldest scientific journal in the United States that has been published continuously. The Journal is devoted to geology and related sciences and publishes articles from around the world presenting results of major research from all earth sciences. Readers are primarily earth scientists in academia and government institutions.