M. Benaouda, M. González-Ronquillo, F. Avilés-Nova, R. Zaragoza-Guerrero, J. Ku-Vera, O. Castelán-Ortega
{"title":"利用增加奶牛日粮中的低质草料来调节亚热带地区的肠道甲烷产量","authors":"M. Benaouda, M. González-Ronquillo, F. Avilés-Nova, R. Zaragoza-Guerrero, J. Ku-Vera, O. Castelán-Ortega","doi":"10.3390/methane3010009","DOIUrl":null,"url":null,"abstract":"Dairy cows are the highest daily and annual methane (CH4) producers among all cattle categories. So, the present study aimed to evaluate the effect of increasing supplementation levels of a low-quality forage on dry matter intake (DMI), DM digestibility (DMD), milk production, enteric CH4 emission, gross energy, and protein partitioning in Holstein cows. In total, eight cows (112 ± 38 days postpartum; mean ± s.d.) were randomly assigned to 4 treatments composed of 4 dietary neutral detergent fibre (NDF) inclusion levels (40.2% (control), 43.3%, 46.5%, and 50.5%) in a 4 × 4 repeated Latin square experimental design. The cows were fed corn + alfalfa silage and a concentrate (60:40 forage:concentrate ratio). To increase the contents of low-quality NDF, part of the silage was replaced with maize stover (MSTV). The CH4 production was measured in an open-circuit respiration chamber. The DMI increased significantly and linearly (p < 0.05) with increasing levels of MSTV. However, the CH4 yield decreased (p < 0.0001) as the NDF level increased (32.1, 28.1, 23.1, and 21.3 CH4 L/kg DMI, respectively). DMD decreased as NDF levels in the diet increased (p < 0.0001). The NDF digestibility (DNDF) explained the better (p < 0.0001) CH4 production response than DMD. It was concluded that low-quality forages can be used to regulate CH4 production in subtropical and tropical climate regions.","PeriodicalId":74177,"journal":{"name":"Methane","volume":"42 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of Increasing Levels of Low-Quality Forage in Dairy Cows’ Diets to Regulate Enteric Methane Production in Subtropical Regions\",\"authors\":\"M. Benaouda, M. González-Ronquillo, F. Avilés-Nova, R. Zaragoza-Guerrero, J. Ku-Vera, O. Castelán-Ortega\",\"doi\":\"10.3390/methane3010009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dairy cows are the highest daily and annual methane (CH4) producers among all cattle categories. So, the present study aimed to evaluate the effect of increasing supplementation levels of a low-quality forage on dry matter intake (DMI), DM digestibility (DMD), milk production, enteric CH4 emission, gross energy, and protein partitioning in Holstein cows. In total, eight cows (112 ± 38 days postpartum; mean ± s.d.) were randomly assigned to 4 treatments composed of 4 dietary neutral detergent fibre (NDF) inclusion levels (40.2% (control), 43.3%, 46.5%, and 50.5%) in a 4 × 4 repeated Latin square experimental design. The cows were fed corn + alfalfa silage and a concentrate (60:40 forage:concentrate ratio). To increase the contents of low-quality NDF, part of the silage was replaced with maize stover (MSTV). The CH4 production was measured in an open-circuit respiration chamber. The DMI increased significantly and linearly (p < 0.05) with increasing levels of MSTV. However, the CH4 yield decreased (p < 0.0001) as the NDF level increased (32.1, 28.1, 23.1, and 21.3 CH4 L/kg DMI, respectively). DMD decreased as NDF levels in the diet increased (p < 0.0001). The NDF digestibility (DNDF) explained the better (p < 0.0001) CH4 production response than DMD. It was concluded that low-quality forages can be used to regulate CH4 production in subtropical and tropical climate regions.\",\"PeriodicalId\":74177,\"journal\":{\"name\":\"Methane\",\"volume\":\"42 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methane\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/methane3010009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methane","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/methane3010009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Use of Increasing Levels of Low-Quality Forage in Dairy Cows’ Diets to Regulate Enteric Methane Production in Subtropical Regions
Dairy cows are the highest daily and annual methane (CH4) producers among all cattle categories. So, the present study aimed to evaluate the effect of increasing supplementation levels of a low-quality forage on dry matter intake (DMI), DM digestibility (DMD), milk production, enteric CH4 emission, gross energy, and protein partitioning in Holstein cows. In total, eight cows (112 ± 38 days postpartum; mean ± s.d.) were randomly assigned to 4 treatments composed of 4 dietary neutral detergent fibre (NDF) inclusion levels (40.2% (control), 43.3%, 46.5%, and 50.5%) in a 4 × 4 repeated Latin square experimental design. The cows were fed corn + alfalfa silage and a concentrate (60:40 forage:concentrate ratio). To increase the contents of low-quality NDF, part of the silage was replaced with maize stover (MSTV). The CH4 production was measured in an open-circuit respiration chamber. The DMI increased significantly and linearly (p < 0.05) with increasing levels of MSTV. However, the CH4 yield decreased (p < 0.0001) as the NDF level increased (32.1, 28.1, 23.1, and 21.3 CH4 L/kg DMI, respectively). DMD decreased as NDF levels in the diet increased (p < 0.0001). The NDF digestibility (DNDF) explained the better (p < 0.0001) CH4 production response than DMD. It was concluded that low-quality forages can be used to regulate CH4 production in subtropical and tropical climate regions.