机器学习分类的紧凑型数据学习

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-02-21 DOI:10.3390/axioms13030137
S. Kim
{"title":"机器学习分类的紧凑型数据学习","authors":"S. Kim","doi":"10.3390/axioms13030137","DOIUrl":null,"url":null,"abstract":"This paper targets the area of optimizing machine learning (ML) training data by constructing compact data. The methods of optimizing ML training have improved and become a part of artificial intelligence (AI) system development. Compact data learning (CDL) is an alternative practical framework to optimize a classification system by reducing the size of the training dataset. CDL originated from compact data design, which provides the best assets without handling complex big data. CDL is a dedicated framework for improving the speed of the machine learning training phase without affecting the accuracy of the system. The performance of an ML-based arrhythmia detection system and its variants with CDL maintained the same statistical accuracy. ML training with CDL could be maximized by applying an 85% reduced input dataset, which indicated that a trained ML system could have the same statistical accuracy by only using 15% of the original training dataset.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Compact Data Learning for Machine Learning Classifications\",\"authors\":\"S. Kim\",\"doi\":\"10.3390/axioms13030137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper targets the area of optimizing machine learning (ML) training data by constructing compact data. The methods of optimizing ML training have improved and become a part of artificial intelligence (AI) system development. Compact data learning (CDL) is an alternative practical framework to optimize a classification system by reducing the size of the training dataset. CDL originated from compact data design, which provides the best assets without handling complex big data. CDL is a dedicated framework for improving the speed of the machine learning training phase without affecting the accuracy of the system. The performance of an ML-based arrhythmia detection system and its variants with CDL maintained the same statistical accuracy. ML training with CDL could be maximized by applying an 85% reduced input dataset, which indicated that a trained ML system could have the same statistical accuracy by only using 15% of the original training dataset.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/axioms13030137\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/axioms13030137","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

本文旨在通过构建紧凑数据来优化机器学习(ML)训练数据。优化机器学习(ML)训练的方法已经得到改进,并成为人工智能(AI)系统开发的一部分。紧凑数据学习(CDL)是通过缩小训练数据集来优化分类系统的另一种实用框架。CDL 源于紧凑型数据设计,它无需处理复杂的大数据就能提供最佳资产。CDL 是一种专用框架,可在不影响系统准确性的情况下提高机器学习训练阶段的速度。使用 CDL 的基于 ML 的心律失常检测系统及其变体的性能保持了相同的统计精度。使用 CDL 进行的 ML 训练可通过减少 85% 的输入数据集实现最大化,这表明只需使用原始训练数据集的 15%,经过训练的 ML 系统就能获得相同的统计精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Compact Data Learning for Machine Learning Classifications
This paper targets the area of optimizing machine learning (ML) training data by constructing compact data. The methods of optimizing ML training have improved and become a part of artificial intelligence (AI) system development. Compact data learning (CDL) is an alternative practical framework to optimize a classification system by reducing the size of the training dataset. CDL originated from compact data design, which provides the best assets without handling complex big data. CDL is a dedicated framework for improving the speed of the machine learning training phase without affecting the accuracy of the system. The performance of an ML-based arrhythmia detection system and its variants with CDL maintained the same statistical accuracy. ML training with CDL could be maximized by applying an 85% reduced input dataset, which indicated that a trained ML system could have the same statistical accuracy by only using 15% of the original training dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1